[1]吕 帅,刘鹏飞,安小伟,等.基于遗传算法和高德地图API实现地震预警台站巡检路径自动规划[J].华南地震,2023,(03):63-69.[doi:10.13512/j.hndz.2023.03.08]
LYU Shuai,LIU Pengfei,AN Xiaowei,et al.Realization of Automatic Planning of Inspection Paths of Earthquake Early Warning Stations Based on Genetic Algorithm and Amap API[J].,2023,(03):63-69.[doi:10.13512/j.hndz.2023.03.08]
点击复制
基于遗传算法和高德地图API实现地震预警台站巡检路径自动规划()
华南地震[ISSN:1006-6977/CN:61-1281/TN]
- 卷:
-
- 期数:
-
2023年03期
- 页码:
-
63-69
- 栏目:
-
地震科学研究
- 出版日期:
-
2023-09-20
文章信息/Info
- Title:
-
Realization of Automatic Planning of Inspection Paths of Earthquake Early Warning Stations Based on Genetic Algorithm and Amap API
- 文章编号:
-
1001-8662(2023)03-0063-07
- 作者:
-
吕 帅1; 2; 刘鹏飞1; 安小伟1; 彭钰翔1; 粟 毅1
-
1.云南省地震局,昆明 650224;2.中国地质大学(北京)信息工程学院,北京 100083
- Author(s):
-
LYU Shuai1; 2; LIU Pengfei1; AN Xiaowei1; PENG Yuxiang1; SU Yi1
-
1.Yunnan Earthquake Agency, Kunming 650224, China;2.School of Information Engineering , China University of Geosciences , Beijing 100083, China
-
- 关键词:
-
台站巡检; 路径规划; 遗传算法; 高德API; 旅行商问题
- Keywords:
-
Seismic station inspection; Route planning; Genetic algorithms; Amap API; Traveling salesman problem
- 分类号:
-
P315.7
- DOI:
-
10.13512/j.hndz.2023.03.08
- 文献标志码:
-
A
- 摘要:
-
由于地震预警台站分布较广,而地震监测中心站的运维人员较少,如何设计合理的巡检路径,以更少的巡检成本完成更多的巡检任务成为中心站面临的一个问题。文中采用高德地图API,基于遗传算法使用python编写程序实现地震预警台站巡检路径近似最优解的自动求解。通过输入云南57个地震预警基准站位置进行测试后得出,系统在样本个数为60,迭代次数为2500h,得到近似最优路径,总行驶距离4869km,过路费439元。相较于其他几次收敛结果,最优巡检路径收益在百公里以上,因此认为,利用遗传算法规划的台站巡检路径可以获得较低的巡检成本。
- Abstract:
-
Due to the wide distribution of earthquake early warning stations and the small number of operation and maintenance personnel in seismic monitoring central stations, how to design a reasonable inspection path to accomplish more inspection tasks with less inspection cost becomes a problem for central stations. Based on the Amap API and genetic algorithm,this paper uses python to write a program to realize the automatic solution of the approximate optimal solution of the inspection path of the earthquake early warning station. After testing by inputting 57 EEW benchmark station locations in Yunnan,it is concluded that the system obtains the approximate optimal path with a total driving distance of 4869 km and a toll fee of 439 yuan RMB when the number of samples is 60 and the number of iterations is 2500. Compared with other convergence results, the optimal inspection path gains more than a hundred kilometers, so the inspection cost of the station inspection path planned by using genetic algorithm is lower.
参考文献/References:
[1] Cea. CEA home page[EB/OL].(2021-08-26)[2023-08-23]. https://www.cea.gov.cn/.
[2] Ammon C J,Lay T,Simpson D W. Great earthquakes and global seismic networks[J]. Seismological Research Letters, 2010,81(6):965-971.
[3] Li J. An improved dynamic programming algorithm for Biton?ic TSP[J]. Applied Mechanics and Materials,2013(347-350):309-3098.
[4] Mahfoudh S S,Khaznaji W,Bellalouna M. A branch and bound algorithm for the porbabilistic traveling salesman problem[C]//2015 IEEE/ACIS 16th International Conference on Software Engineering,Artificial Intelligence,Networking and Parallel/Distributed Computing(SNPD). Takamatsu:IEEE,2015.
[5] Czopik J. An application of Hungarian algorithm to solve trav?eling salesman problem[J]. American Journal of Computation?al Mathematics,2019,9(2):61-67.
[6] Islam E,Sultana M,Ahmed F,et al. An improved nearest neighbor algorithm for solving TSP[J]. International Journal of Scientific Research in Computer Science,2018,3(5):668-672.
[7] Yu H,Zhang K. Optimizing the Greedy algorithm used in the TSP abstract problems[J]. Applied Mechanics and Materials, 2014(2352):651–653.
[8] Mocková D,Rybi?ková A. Application of genetic algorithms to vehicle routing problem[J]. Neural Network World,2014, 24(1):57-78.
[9] Mavrovouniotis M,Muller F M,Shengxiang Y. Ant colony op?timization with local search for dynamic traveling salesman problems[J]. IEEE Trans Cybern,2017,47(7):1743-1756.
[10] Lin X,Li S X. Solving TSP based on the improved simulat?ed annealing algorithm with sequential access restrictions [C]//Proceedings of the 2016 6th International Conference on Mechatronics,Computer and Education Informationiza?tion(MCEI 2016). Paris,France:Atlantis Press,2016:610-616.
[11] Holland J H. Adaptation in natural and artificial systems:an introductory analysis with applications to biology,con?trol and artificial intelligence[M]. Cambridge,MA:MIT Press,1992.
[12]袁豪. 旅行商问题的研究与应用[D]. 南京:南京邮电大学,2017.
[13]张广林,胡小梅,柴剑飞,等. 路径规划算法及其应用综述[J].现代机械,2011(05):85-90.
[14]马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,29(04):1201-1206+1210.
[15]吴晓涛,孙增圻.用遗传算法进行路径规划[J].清华大学学报(自然科学版),1995,35(05):14-19.
[16]蒋丽,王静,梁昌勇,等.基于改进蚁群算法的众包配送路径研究[J].计算机工程与应用,2019,55(08):244-249.
[17]戴波,张扬,缪发军,等.江苏省地震台站巡检系统架构[J].地震地磁观测与研究,2017,38(06):110-116.
备注/Memo
- 备注/Memo:
-
收稿日期:2023-05-10
基金项目:云南省地震局传帮带项目(CQ2-2021003)资助
作者简介:吕帅(1991-),男,工程师,主要从事地震信息化工作。E-mail:lv_303494@163.com
更新日期/Last Update:
2023-09-20