[1]甘星球,曾旻,尤浩,等.山岭隧道断层错动及地震响应模型试验研究[J].华南地震,2021,41(03):8-17.[doi:10.13512/j.hndz.2021.03.02 ]
 GAN Xingqiu,ZENG Min,YOU Hao,et al.Study on Shaking Table Test of Mountain Tunnel under Fault Dislocation and Earthquake Action[J].,2021,41(03):8-17.[doi:10.13512/j.hndz.2021.03.02 ]
点击复制

山岭隧道断层错动及地震响应模型试验研究()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2021年03期
页码:
8-17
栏目:
土木工程防震减灾
出版日期:
2021-09-20

文章信息/Info

Title:
Study on Shaking Table Test of Mountain Tunnel under Fault Dislocation and Earthquake Action
文章编号:
1001-8662(2021)03-0008-10
作者:
甘星球 1曾旻 1尤浩 1尉德新 1李沛 2陈捷翎 3
(1.中交第一航务工程局股份有限公司,天津 300461;2.中交天津港湾工程研究院股份有限公司,天津 300222;3.中南大学资源与安全工程学院,长沙 410083)
Author(s):
GAN Xingqiu1ZENG Min1YOU Hao1YU Dexin1LI Pei2CHEN Jieling3
(1. CCCC First Harbor Engineering Co.,Ltd.,Tianjin 300461,China;2. CCCC Tianjin Port Engineering Institute Co.,Ltd.,Tianjin 300222,China;3. School of Resources and Safety Engineering of Central South University,Changsha 410083,China)
关键词:
东非大裂谷隧道振动台试验相似比断层错动声发射
Keywords:
East African Great Rift Valley Tunnel Shaking table test Similarity ratio Fault movementAcoustic emission
分类号:
U452.28
DOI:
10.13512/j.hndz.2021.03.02
文献标志码:
A
摘要:
东非大裂谷处于持续扩张运动中,断层错动和地震作用活跃?对此依托内马铁路 2号隧道工程,设计断层错动和地震作用下山岭隧道振动台试验?综合确定长度相似比 0.05?密度相似比 0.8?弹性模量相似比 0.03,设计了一种新型的断层错动装置和隧道震动裂缝声发射监测方法?试验结果表明:断层错动装置较好的模拟了岩层错动,声发射监测技术较好的监测了断层和地震作用下隧道衬砌微裂隙产生?断层错动和地震共同作用下,Y方向的地震波引起隧道衬砌侧壁产生较大响应,Z方向地震波引起隧道衬砌拱顶产生较大响应,隧道衬砌加速度响应值受断层错动量影响较小?断层错动和地震共同作用下,Y方向输入的地震波引起的隧道断层段衬砌侧壁受拉应变较大,且随断层滑移量增加而增加,其他位置拉应变较小?断层错动和地震共同作用下,Z方向的地震波引起的隧道断层段衬砌拱顶和拱底外壁受拉应变较大,且随断层滑移量增加而增加,其他位置拉应变较小?该试验结果对类似隧道工程研究具有参考价值?
Abstract:
The Great Rift Valley of East Africa is in a continuous expansion movement,with active fault dislocation and seismic action. Based on the No.2 tunnel project of Nairobi Malaba railway,the shaking table tests of mountaintunnel is designed considering the action of fault dislocation and earthquake. The length similarity ratio,density similarity ratio and elastic modulus similarity ratio are determined to be 0.05,0.8 and 0.03 respectively. A new type of fault dislocation device is designed as well as the acoustic emission monitoring method for tunnel vibrationcracks. The test results show that the fault displacement device well simulates the rock displacement,and the acoustic emission monitoring technology well monitors the whole micro fracture of tunnel wall during the test. Underthe action of fault dislocation and earthquake,the seismic wave in Y direction causes a greater response on the side wall of tunnel lining,and the seismic wave in Z direction causes a greater response on the vault of tunnel lining,and the acceleration response value of tunnel lining is less affected by fault dislocation. And under the action offault dislocation and earthquake,the tensile strain of lining side wall of tunnel fault section caused by seismic wave input in Y direction increases with the increase of fault slip,while the tensile strain at other positions is small. What’s more,under the action of fault dislocation and earthquake,the tensile strains of the lining vaultand the outer wall of the arch bottom of the tunnel fault section caused by the seismic wave in Z-direction are large,and increase with the increase of fault slip,while the tensile strain at other positions is small. The test results ofthis paper have reference value for similar tunnel engineering research.

参考文献/References:

[1]Wernicke B. Low ‐angle normal faults and seismicity: Areview[J]. Journal of Geophysical Research Solid Earth,1995,100(B10):20159-20174 [2]李天斌 .汶川特大地震中山岭隧道变形破坏特征及影响因素分析 [J].工程地质学报,2008,16(6):742-750 [3]CILINGIR U,MADABHUSHI S P G. A model study on theeffects of input motion on the seismic behaviour of tunnels[J].Soil Dynamics and Earthquake Engineering,2011,31(3): 452-462 [4]周晓洁,张越宇,何颖,等 .地震波斜入射下沉管隧道的地震响应分析 [J].地震工程学报,2017,39(4):600-608 [5]Yousself M A H,Jeffrey J H,Birger S,et al. Seismic design and analysis of underground structures[J].Tunnelingand Underground Space Technology,2001,16(4):247-293 [6]SongCM,Wolf J P. Dynamic stiffness of unboundedmedium based on damping-solvent extraction[J]. EESD,1994,23(2):169-181 [7]谷音,朱清,钟华,等 .考虑水平及竖向地震影响的盾构隧道动力分析及 Pushover方法研究 [J].工程抗震与加固改造,2017,12(S1):44-51 [8]周云东,上官子恒,褚飞飞,等 .地震动非一致性对隧道动力响应的影响分析 [J].地震工程学报,2017,39(1):8-12 [9]何永辉 .穿越活动断层山岭隧道破坏机制及其安全性分析[D].成都:西南交通大学,2017 [10]Wernicke B. Low-angle normal faults and seismicity: Areview[J]. Journal of Geophysical Research Solid Earth,1995,100(B10):20159-20174 [11]苏伟,冷伍明,雷金山,等 .岩体相似材料试验研究 [J].土工基础,2008,10(5):73-75 [12]苏永奇,马伟,李明勇,等 .兰州地铁隧道结构在地震作用下的动力响应 [J].地震工程学报,2015,37(4):938-943 [13]信春雷,高波,王英学,等 .跨断层隧道可变形抗减震措施振动台试验研究 [J].岩土力学,2015,21(4):1041-1049 [14]信春雷,高波,闻高明,等 .跨走滑断层隧道地震破坏特征与抗减震措施研究 [J].振动工程学报,2016,13(4): 694-703

相似文献/References:

[1]姚士磊.隧道衬砌结构断裂粘滑段地震动力响应数值分析[J].华南地震,2020,40(01):105.[doi:10.13512/j.hndz.2020.01.016]
 YAO Shilei.Numerical Analysis of Seismic Dynamic Response of Fractured Stick-slip Section of Tunnel Lining Structure[J].,2020,40(03):105.[doi:10.13512/j.hndz.2020.01.016]
[2]尉德新,曾旻,吴荣,等.东非大裂谷山岭隧道地质灾害熵权可拓物元法评价及风险控制[J].华南地震,2021,41(03):18.[doi:10.13512/j.hndz.2021.03.03 ]
 WEI Dexin,ZENG Min,WU Rong,et al.Study on Assessment and Risk Control for Geological Disasters of Mountain Tunnel in East African Great Rift Valley Based on Entropy Weight Extension Matter Element Method[J].,2021,41(03):18.[doi:10.13512/j.hndz.2021.03.03 ]

备注/Memo

备注/Memo:
收稿日期:2020-12-16
基金项目:国家自然科学基金项目(51508579,51674287)
作者简介:甘星球(1976-),男,高级工程师,主要从事地下工程方面的研究工作? E-mail:1045938440@qq.com

更新日期/Last Update: 2021-09-30