[1]于书媛,骆佳骥,杨源源.基于高分卫星遥感影像的城市建筑物提取研究[J].华南地震,2019,39(02):26-33.[doi:10.13512/j.hndz.2019.02.005]
 YU Shuyuan,LUO Jiaji,YANG Yuanyuan.Research on Extraction of Urban Buildings based on High Satellite Remote Sensing Images[J].,2019,39(02):26-33.[doi:10.13512/j.hndz.2019.02.005]
点击复制

基于高分卫星遥感影像的城市建筑物提取研究()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2019年02期
页码:
26-33
栏目:
华南地震
出版日期:
2019-06-30

文章信息/Info

Title:
Research on Extraction of Urban Buildings based on High Satellite Remote Sensing Images
作者:
于书媛骆佳骥杨源源
安徽省地震局,合肥 230031
Author(s):
YU ShuyuanLUO JiajiYANG Yuanyuan
Anhui Earthquake Agency,Hefei 230031,China
关键词:
面向对象高分辨率影像城市建筑物影像分割
Keywords:
Object-orientedHigh-resolution imageUrban buildingsImage segmentation
DOI:
10.13512/j.hndz.2019.02.005
文献标志码:
A
摘要:
以安庆市区的高分一号影像为信息源,结合地震应急基础统计数据资料,重点研究基于CART决策树的面向对象分类对研究区的建筑物进行分类提取,分类的总体精度和Kappa系数分别为83.9%和0.821。结果表明:基于CART决策树面向对象分类方法对研究区高分一号影像进行建筑物提取,分类精度较好,可作为地震应急基础数据库更新辅助手段之一。
Abstract:
Based on the high-score No. 1 image of Anqing city and the basic statistical data of earthquake emergency,the object-oriented classification based on CART decision tree is studied to extract the buildings in the study area. The overall accuracy and Kappa coefficient of the classification are 83.9% and 0.821,respectively. Results show that the object-oriented classification method based on CART decision tree can extract buildings from the high-score No. 1 image in the study area,and the classification accuracy is good. It can be used as one of the auxiliary means for updating the basic database of earthquake emergency response.
更新日期/Last Update: 2019-07-04