基于加权马氏距离法的砂土液化评级模型

(1.徐州市数字地震台网中心,江苏 徐州 221000;2.徐州市地震台,江苏 徐州 221000;3.河南省地质矿产勘查开发局第四地质勘查院,郑州 450000;4.江苏省地质矿产局第五地质大队,江苏 徐州 221000)

砂土液化;权重;马氏距离判别法

Evaluation Model of Sand Soil Liquefaction based on Weighted Mahalanobis Distance Method
ZHANG Shaoteng1,YU Juan1,LIU Jing1,GAO Mingzhi2,LI Pei3,LIU Fei4

(1.Xuzhou Digital Seismic Network Center,Xuzhou 221000,China;2.Xuzhou Seismic Station,Xuzhou 221000,China;3.The Fourth Geological Exploration Institute of Henan Geological and Mineral Exploration and Development Bureau,Zhengzhou 450000,China;4.The Fifth Geological Team of Xuzhou,Xuzhou 221000,China)

Sand Soil Liquefaction;Weight;Mahalanobis distance discriminant method

DOI: 10.13512/j.hndz.2020.04.011

备注

砂土液化判别可以有效预测地震砂土液化危险区,及时对危险区进行针对性处理,有助于保障生命与财产安全。通过马氏距离判别法和综合权重赋值相结合,建立基于砂土液化预测的判别模型,选取粒径、层厚、标贯击数作为砂土液化判别因子,运用综合权重法确定各因子的权重,将砂土液化样本分为轻微液化、中等液化以及严重液化三个等级,依据加权马氏距离液化判别模型求得样本液化等级。计算结果与工程实测结果对比显示,加权马氏距离模型进行砂土液化判别具有良好的效果,与实测结果有较强的一致性,和其他判别方法相比具有较低的误判率,可望成为砂土液化预测的有效手段。

Sand soil liquefaction discrimination can effectively predict liquefaction risk areas to target treatment of dangerous areas timely and help to ensure the safety of life and property. Through the combination of Mahala­nobis distance discrimination method and comprehensive weight assignment,the paper establishes a discriminant model based on sand liquefaction prediction. Selecting particle size,layer thickness,and standard penetration number as the sand liquefaction discriminating factors,and using the comprehensive weight method to determine each factor,the sand liquefaction sample is divided into three grades: light liquefaction,medium liquefaction and severe liquefaction,and the sample liquefaction grade is obtained according to the weighted Mahalanobis distance liquefaction discrimination model. The comparison between the calculated results and the measured results shows that the weighted Mahalanobis distance model has a good effect on sand liquefaction prediction,has a strong consistency with the measured results,and has a lower miscalculation rate compared with other judgment meth­ods,which is expected to become an effective means for sand liquefaction prediction.