[1]张 萌,田景丹,柳 岷,等.2024年7月24日贵州六盘水MS4.6地震舆情分析[J].华南地震,2025,(03):152-160.[doi:10.13512/j.hndz.2025.03.18]
 ZHANG Meng,TIAN Jingdan,LIU Min,et al.Analysis of Public Opinions on Liupanshui MS4.6 Earthquake in Guizhou on July 24,2024[J].,2025,(03):152-160.[doi:10.13512/j.hndz.2025.03.18]
点击复制

2024年7月24日贵州六盘水MS4.6地震舆情分析()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年03期
页码:
152-160
栏目:
应急管理与实践
出版日期:
2025-09-30

文章信息/Info

Title:
Analysis of Public Opinions on Liupanshui MS4.6 Earthquake in Guizhou on July 24,2024
文章编号:
1001-8662(2025)03-0152-09
作者:
张 萌田景丹柳 岷肖 剑
贵州省地震局,贵阳 550001
Author(s):
ZHANG MengTIAN JingdanLIU MinXIAO Jian
Guizhou Earthquake Agency , Guiyang 550001, China
关键词:
舆情分析情感分析LDA主题模型时空特征
Keywords:
Public opinion analysisSentiment analysisLDA theme modelSpatio-temporal characteristic
分类号:
P315.9
DOI:
10.13512/j.hndz.2025.03.18
文献标志码:
A
摘要:
社交媒体成为突发事件信息传播与舆情发酵核心载体。以2024年7月24日贵州六盘水4.6级地震为例,采集震后48h的社交媒体数据中的文本、地址、时间数据,研究了此次地震舆情的关注主题、情感特征、空间分布和时序变化。研究结果表明:事件讨论峰值出现在震后4h,主题包含震区安全、震感描述、地震事件感受、祝福和感谢等内容;在情感演化方面,前期中性情绪占比较高,震后20h内无伤亡和财产损失报道,逐渐转为积极情绪;在空间分布上,评论主要集中在贵州地区,以发震省及周边、中东部地区为主。结果可为少震地区的震后网络舆情分析和处置提供决策支持或理论参考。
Abstract:
Social media has become the core carrier for disseminating emergency information and intensifying public opinions. This study took the Liupanshui MS4.6 earthquake in Guizhou Province on July 24, 2024 as an example, collected text, address, and time data from social media within 48 hours after the earthquake. This study investigated the focus themes, emotional characteristics, spatial distribution, and temporal changes of public opinions on this earthquake. The research results indicate that the peak of event discussion occurs 4 hours after the earthquake, with themes including earthquake zone safety, earthquake sensation description, earthquake event experience,blessings,and gratitude. In terms of emotional evolution,neutral emotions account for a relatively high proportion in the early stage, and they gradually turn into positive emotions as there are no reports of casualties or property damage within 20 hours after the earthquake. In terms of spatial distribution, comments are mainly concentrated in the Guizhou region,particularly the provinces and surrounding areas where earthquakes have occurred, as well as the central and eastern regions. The results of this study can provide decision support or theoretical reference for post-earthquake network public opinion analysis and disposal in areas with fewer earthquakes.

参考文献/References:

[1]中国互联网络信息中心.第54次《中国互联网络发展状况统计报告》发布[J].传媒论坛,2024,7(17):121.
[2]杨腾飞,解吉波,闫东川,等.基于深度学习的社交媒体情感信息抽取及其在灾情分析中的应用研究[J].地理与地理信息科学,2020,36(02):62-68.
[3] Ma D,Zhang C,Zhao L,et al. An analysis of the evolution of public sentiment and spatio-temporal dynamics regarding building collapse accidents based on sina Weibo data [J]. ISPRS International Journal of Geo-Information,2023,12 (10):24.
[4] Wang C,Ye Y,Qiu Y,et al. Evolution and spatiotemporal analysis of earthquake public opinion based on social media data [J]. Earthquake Science,2024,37(05):387-406.
[5]陈亚男,薄涛,王洋,等.新浪微博地震舆情数据库的设计与实现[J].震灾防御技术,2023,18(04):873-882.
[6]何萍.广西北流—广东化州5.2级地震的网络舆情分析及引导[J].华南地震,2020,40(2):60-66.
[7]曹彦波.基于新浪微博的2018年云南通海5.0级地震舆情时空特征分析[J].地震研究,2018,41(04):525-533.
[8]刘耀辉,刘婉婷,张文焯,等.基于新浪微博数据的云南漾濞6.4级地震舆情时空特征及情感分析[J].自然灾害学报,2022,31(01):168-178.
[9]王晨雨,叶妍君,邱英俏,等.基于深度学习的地震舆情信息提取及时空可视化[J].自然灾害学报,2023,32(05):64-79.
[10]郑通彦,王尅丰,黄猛,等.基于改进XLNet算法的震后舆情分析研究——以甘肃积石山县6.2级和新疆乌什县7.1级地震为例[J].地震工程学报,2024,46(04):955-964.
[11]徐晓桐,陈吉锋,李东平,等.基于多头自注意力机制的CNN地震舆情分析模型研究[J].华南地震,2024,44(4):21-32.
[12]闫晓美,牛艳杰,王宁,等.基于震后舆情的灾情信息提取研究[J].山西地震,2024,01):1-4+16.
[13]袁庆禄,方婉琳,孙瑞婷,等. 2022年四川3次地震舆情风险评估与监测研究[J].地震研究,2024,47(2):263-272.
[14]胡越,王卓,方瑶.基于新浪微博的2022年吉林松原MS 4.3地震舆情信息数据分析[J].地震地磁观测与研究, 2024,45(02):171-176.
[15]薛杭,赵烽帆,荣华. 2022年9月5日四川泸定MS6.8地震舆情分析[J].中国地震,2022,38(3):425-431.
[16]刘婉婷,杨新月,刘耀辉,等.基于微博数据的西藏那曲比如县地震舆情分析[J].震灾防御技术,2021,16(04):771-780.

备注/Memo

备注/Memo:
收稿日期:2025-02-10
基金项目:贵州省地震局地震科研基金课题(GZSDZJKYJJKT-202508);贵州省地震局科技创新团队(GZSDZIDZKJJ202104)联合资助。
作者简介:张萌(1994-),女,工程师,主要从事地震应急服务工作。E-mail:cheungm@126.com
更新日期/Last Update: 2025-09-30