[1]吴承宇,何 军.工程系统的多变量极值响应估计与抗震动力可靠性分析*[J].华南地震,2025,(03):89-98.[doi:10.13512/j.hndz.2025.03.11]
 WU Chengyu,HE Jun.Multivariate Extreme Response Estimation and Seismic Dynamic Reliability Analysis of Engineering Systems[J].,2025,(03):89-98.[doi:10.13512/j.hndz.2025.03.11]
点击复制

工程系统的多变量极值响应估计与抗震动力可靠性分析*()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年03期
页码:
89-98
栏目:
土木工程防震减灾
出版日期:
2025-09-30

文章信息/Info

Title:
Multivariate Extreme Response Estimation and Seismic Dynamic Reliability Analysis of Engineering Systems
文章编号:
1001-8662(2025)03-0089-10
作者:
吴承宇何 军
上海交通大学船舶海洋与建筑工程学院土木工程系,上海 200240
Author(s):
WU ChengyuHE Jun
Department of Civil Engineering,School of Ocean and Civil Engineering,Shanghai Jiao Tong University, Shanghai 200240, China
关键词:
结构随机振动多变量极值响应工程网络系统抗震动力可靠性多元Gumbel Copula
Keywords:
Structural random vibrationMultivariate extreme responsesEngineering network systemsSeismic dynamic reliabilityMultivariate Gumbel Copula
分类号:
TU352.11
DOI:
10.13512/j.hndz.2025.03.11
文献标志码:
A
摘要:
基于多元GumbelCopula函数和广义极值分布提出随机激励下结构系统极值响应联合分布的估计模型,给出基于响应样本的模型参数估计方法,建立基于极值响应联合分布的网络不交最小路和不交最小割的联合概率计算方法,用于失效相关性工程系统连通可靠性的有效分析。六层剪切型建筑模型随机地震响应的多变量极值估计和变电站设备系统的抗震动力可靠性分析验证了本文提出的结构极值响应联合分布估计模型和基于极值响应联合分布的网络不交最小路和不交最小割联合概率计算方法的有效性。
Abstract:
This paper proposed an estimation model of joint distributions of structural system extreme responses under random excitation based on multivariate Gumbel Copula function and generalized extreme distributions, gave the estimation method of model parameters based on response samples,and established the joint probability calculation method of network disjoint shortest paths and cuts based on joint distributions of extreme responses, which is used for effective analysis of the connectivity reliability of the failure dependent engineering systems. The multivariate extreme value estimation of the random seismic response of a six-story shear-building model and the seismic dynamic reliability analysis of the equipment system of substation validate the effectiveness of the estimation model of the joint distributions of the extreme responses of the structure proposed in this paper and the joint probability calculation method of the network disjoint shortest paths and cuts based on the joint distributions of the extreme responses.

参考文献/References:

[1] Leadbetter M R,Lindgren G,Rootzén H. Extremes and relat?ed properties of random sequences and processes[M]. New York,NY:Springer,1983.
[2] Mikosch T. How to model multivariate extremes if one must? [J]. Statistica Neerlandica,2005,59(3):324-338.
[3] Goda K. Statistical modeling of joint probability distribution using copula:Application to peak and permanent displace?ment seismic demands[J]. Structural Safety,2010,32(2):112-123.
[4] Eryilmaz S. Multivariate copula based dynamic reliability modeling with application to weighted-k-out-of-n systems of dependent components[J]. Structural Safety,2014(51):23-28.
[5] Genest C,Ne?lehová J,Ghorbal N B. Estimators based on Kendall’s Tau in multivariate copula models[J]. Australian&New Zealand Journal of Statistics,2011,53(2):157-177.
[6] Goda K,Tesfamariam S. Multi-variate seismic demand mod?elling using copulas:Application to non-ductile reinforced concrete frame in Victoria,Canada[J]. Structural Safety,2015 (56):39-51.
[7] Rózsás?,Mogyorósi Z. The effect of copulas on time-variant reliability involving time-continuous stochastic processes[J]. Structural Safety,2017(66):94-105.
[8] Shinozuka M,Deodatis G. Simulation of stochastic processes by spectral representation[J]. Applied Mechanics Reviews, 1991,44(4):191-204.
[9] He J. Approximate method for estimating extreme value re?sponses of nonlinear stochastic dynamic systems[J]. Journal of Engineering Mechanics,2015( 141):04015009.
[10] He J. Karhunen-loéve expansion for random earthquake ex?citations[J]. Earthquake Engineering and Engineering Vi?bration,2015,14(1):77-84.
[11] He J,Gong J H. Estimate of small first passage probabilities of nonlinear random vibration systems by using tail approxi?mation of extreme distributions[J]. Structural Safety,2016 (60):28-36.
[12] Naess A,Gaidai O. Monte carlo methods for estimating the extreme response of dynamical systems[J]. Journal of Engi?neering Mechanics,2008,134(8).
[13] Grigoriu M,Samorodnitsky G. Reliability of dynamic sys?tems in random environment by extreme value theory[J]. Probabilistic Engineering Mechanics,2014(38):54-69.
[14]赵宜宾,王福昌,任晴晴,等.基于广义极值分布的巴颜喀拉块体中部地震危险性分析[J].世界地震工程,2023, 39(1):209-217.
[15] Fujimura K,Kiureghian A. Tail-equivalent linearization method for nonlinear random vibration[J]. Probabilistic En?gineering Mechanics,2007,22(1):63-76.
[16] He J,Li J. Seismic reliability analysis of large electric power systems[J]. Earthquake Engineering and Engineering Vibra?tion,2004,3(1):51-55.
[17] Li J,He J. A recursive decomposition algorithm for network seismic reliability evaluation[J]. Earthquake Engineering &Structural Dynamics,2002(31):1525-1539.
[18] Lim H W,Song J. Efficient risk assessment of lifeline net?works under spatially correlated ground motions using se?lective recursive decomposition algorithm[J]. Earthquake Engineering & Structural Dynamics,2012(4)1:1861-1882.
[19] He J. Response spectral characteristics and reliabilities of linear structures to both intensity and frequency content time-varying earthquake loads[J]. Journal of Structural Engi?neering,2012(138):1492-1504.
[20] Song J. Seismic response and reliability of electrical substa?tion equipment and systems[D]. Berkeley,CA:University of California,2004.

备注/Memo

备注/Memo:
收稿日期:2024-8-25
基金项目:国家自然科学基金项目(51978397)
作者简介:吴承宇(1998-),男,硕士,主要从事结构地震安全性的研究。E-mail:1275973625@qq.com
通信作者:何军(1968-),男,教授,博士,主要从事结构可靠度方法和生命线工程地震风险预测理论研究。E-mail:junhe@sjtu.edu.cn
更新日期/Last Update: 2025-09-30