[1]赵永福.基于贝叶斯算法和地震波时频的页岩油沉积储层流体识别[J].华南地震,2025,(01):116-122.[doi:10.13512/j.hndz.2025.01.14]
 ZHAO Yongfu.Fluid Identification of Shale Oil Sedimentary Reservoirs Based on Bayesian Algorithmand Seismic Wave Time-Frequency Analysis[J].,2025,(01):116-122.[doi:10.13512/j.hndz.2025.01.14]
点击复制

基于贝叶斯算法和地震波时频的页岩油沉积储层流体识别()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年01期
页码:
116-122
栏目:
海洋地球物理
出版日期:
2025-03-30

文章信息/Info

Title:
Fluid Identification of Shale Oil Sedimentary Reservoirs Based on Bayesian Algorithmand Seismic Wave Time-Frequency Analysis
文章编号:
1001-8662(2025)01-0116-07
作者:
赵永福
山东开放大学,济南 250000
Author(s):
ZHAO Yongfu
Shandong Open University , Jinan 250000, China
关键词:
贝叶斯算法地震波时频页岩油沉积储层流体识别
Keywords:
Bayesian algorithm Time-frequency of seismic waves Shale oil Sedimentary reservoirs Fluid identification
分类号:
TE349
DOI:
10.13512/j.hndz.2025.01.14
文献标志码:
A
摘要:
沉积储层流体识别是保证页岩油勘探和开采的可靠依据,因此,提出基于贝叶斯算法和地震波时频的页岩油沉积储层流体识别方法。该方法利用贝叶斯算法分类地震波时频信号,获取其中的时频信号集;采用希尔伯特—黄变换对该信号集进行分解,获取信号中的各个模态分量,利用模态中的频率分量和能量损失结果之间的关联关系,确定地震波瞬时谱能量和频率之间频谱结果,获取等效吸收系数结果,依据该结果判断时频衰减梯度,完成页岩油沉积储层流体识别。测试结果显示:该方法能够有效完成地震波时频数据中高频数据和低频数据的区分,各个模态分量的贡献率均在92.44%以上,分解效果良好;每个分量能够描述瞬时频率的变化情况;完成不同的目标深度下页岩油沉积储层流体识别。
Abstract:
Fluid identification of sedimentary reservoirs is a reliable basis for ensuring shale oil exploration and production. This paper proposed a fluid identification method for shale oil sedimentary reservoir based on Bayesian algorithm and seismic wave time-frequency analysis. The method used the Bayesian algorithm to classify seismic time-frequency signals and obtained the time-frequency signal set. Subsequently, it used the Hilbert-Huang transform to decompose the signal set and extract various modal components in the signal. By utilizing the correlation between frequency components and energy loss results in the modal, the spectral results between the instantaneous spectral energy and the frequency of seismic waves were determined,and the equivalent absorption coefficient results were obtained. Based on this result, the time-frequency attenuation gradient was determined, and the fluid identification of shale oil sedimentary reservoir was completed. The test results show that this method can effectively distinguish high-frequency data and low-frequency data in seismic wave time-frequency data, and the contribution rates of each modal component are all above 92.44%, with good decomposition effect. Each component can describe the variation of instantaneous frequenc. This method can be used to complet fluid identification of shale oil sedimentary reservoirs at different target depths.

参考文献/References:

[1]魏建光,付兰清,赵国忠,等.松辽盆地古龙页岩油储层孔隙结构对外来流体的敏感性[J].大庆石油地质与开发, 2022,41(03):120-129.
[2]李红斌,王贵文,王松,等.基于Kohonen神经网络的页岩油岩相测井识别方法——以吉木萨尔凹陷二叠系芦草沟组为例[J].沉积学报,2022,40(03):626-640.
[3]韩玉娇.基于AdaBoost机器学习算法的大牛地气田储层流体智能识别[J].石油钻探技术,2022,50(01):112-118.
[4]覃莹瑶,张宫,罗超,等.吉木萨尔页岩油储层二维核磁响应特征[J].中南大学学报(自然科学版),2022,53(09):3387-3400.
[5]曾亚丽,龙盛芳,吴朦朦,等.基于GeoEast地震属性分析的储层预测技术及其在环县地区页岩油勘探开发中的应用[J].石油地球物理勘探,2022,57(S1):196-201+16-17.
[6]张家成,张宫,覃莹瑶,等.基于核磁共振T2谱组分分解的页岩油储层流体识别方法[J].地球物理学进展,2023,38 (03):1238-1246.
[7]何健,文晓涛,李波,等.基于随机森林算法的叠前流体识别[J].石油学报,2022,43(03):376-385.
[8]许凯.基于贝叶斯理论和HTI介质方位地震振幅差的裂缝弱度参数反演方法[J].石油物探,2023,62(03):507-516.
[9]王继超,崔鹏兴,刘双双,等.页岩油储层微观孔隙结构特征及孔隙流体划分[J].油气地质与采收率,2023,30(04):46-54.
[10]梁成钢,李菊花,陈依伟,等.基于朴素贝叶斯算法评估页岩油藏产能[J].深圳大学学报(理工版),2023,40(01):66-73.
[11]王鹏威,刘忠宝,张殿伟,等.四川盆地复兴地区中侏罗统凉高山组页岩油富集条件及勘探潜力[J].天然气地球科学,2023,34(07):1237-1246.
[12]康积伦,王家豪,马强,等.准噶尔盆地吉木萨尔凹陷芦草沟组细粒湖底扇沉积及其页岩油储层意义[J].地质科技通报,2023,42(05):82-93.
[13]曹子龙,黄杜若.基于XGBoost算法的工程场地实测和人工地震波时频特征分析与判别[J].清华大学学报(自然科学版),2022,62(08):1330-1340.
[14]耿伟恒,陈小宏,李景叶,等.基于L1-2正则化的地震波阻抗“块”反演[J].石油地球物理勘探,2022,57(06):1409-1417+1260-1261.
[15]李思奇,吕王勇,邓柙,等.基于改进PCA的朴素贝叶斯分类算法[J].统计与决策,2022,38(01):34-37.

备注/Memo

备注/Memo:
收稿日期:2024-05-29
作者简介:赵永福(1981-),男,博士,副教授,主要研究方向为沉积储层,油气成藏,非常规油气勘探等。E-mail:acqvaid@163.com
更新日期/Last Update: 2025-03-30