[1]李元元,杨小江,黄国平,等.深水大位移井随钻储层实时描绘技术在南海珠江口盆地E边际油田开发中的应用分析[J].华南地震,2025,(01):109-115.[doi:10.13512/j.hndz.2025.01.13]
 LI Yuanyuan,YANG Xiaojiang,HUANG Guoping,et al.Application of Real-Time Reservoir Delineation Technology While Drilling in Deepwater Extended Reach Wells During Development of E Marginal Oilfield in Pearl River Mouth Basin,South China Sea[J].,2025,(01):109-115.[doi:10.13512/j.hndz.2025.01.13]
点击复制

深水大位移井随钻储层实时描绘技术在南海珠江口盆地E边际油田开发中的应用分析()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年01期
页码:
109-115
栏目:
海洋地球物理
出版日期:
2025-03-30

文章信息/Info

Title:
Application of Real-Time Reservoir Delineation Technology While Drilling in Deepwater Extended Reach Wells During Development of E Marginal Oilfield in Pearl River Mouth Basin,South China Sea
文章编号:
1001-8662(2025)01-0109-07
作者:
李元元杨小江黄国平何理鹏韦 贤
中海石油(中国)有限公司深圳分公司,深圳 518067
Author(s):
LI YuanyuanYANG XiaojiangHUANG GuopingHE LipengWEI Xian
Shenzhen Branch , CNOOC China Limited , Shenzhen 518054, China
关键词:
深水边际油田超深探边超高清探边联合反演
Keywords:
Deepwater marginal oilfield Ultra-deep boundary detection Ultra-high-resolution boundary detectionJoint inversion
分类号:
P618.13
DOI:
10.13512/j.hndz.2025.01.13
文献标志码:
A
摘要:
针对南海珠江口盆地E边际油田大位移井开发中面临的地层界面不明确、储层非均质性强、油柱高度低等地质风险难题,创新性引入了基于超深探测和高分辨率电阻率联合反演的随钻储层实时描绘技术,钻井实施准备阶段结合研究区地质情况,通过模拟研究区地层电阻率响应建立了研究区地质风险规避策略。钻井实施过程中利用实时反演储层顶面深度和构造形态有效保障了优质储层的钻遇率和油柱高度。研究结果表明该技术在南海地区首次实现5个地层界面及6个薄储层(厚度<2m)的实时精准识别;成功实现优质储层(油柱高度≥8m)的全井段动态追踪;指导实时地质导向优化,保障完成亚洲深水区大位移开发井的实施。本技术构建的“地质—工程—经济”一体化开发模式,成功保障了E边际油田的经济有效开发,为全球深水边际油气田经济开发提供了创新性解决方案。
Abstract:
To address the geological challenges encountered in the development of extended-reach wells in the E marginal oilfield of the Pearl River Mouth Basin, South China Sea, including ambiguous formation interfaces, strong reservoir heterogeneity,and low oil column height,this study innovatively introduced a real-time reservoir delineation technology while drilling based on ultra-deep detection and high-resolution resistivity joint inversion. During the pre-drilling preparation phase, a geological risk mitigation strategy was established through numerical simulation of formation resistivity responses specific to the study area. Throughout the drilling operations,real-time inversion of reservoir roof depth and structural configuration effectively ensured optimal reservoir penetration rate and maintained sufficient oil column height. The results demonstrate that this technology has achieved the first real-time precise identification of five formation interfaces and six thin reservoirs(thickness<2 m)in the South China Sea region. Successful dynamic tracking of high-quality reservoirs(oil column heigh≥8 m)throughout the entire well section was realized, enabling optimized real-time geosteering that facilitated the completion of extended-reach development wells in Asia′s deepwater area. The integrated “geology-engineering-economics”development model established by this technology has not only ensured the cost-effective development of the E marginal oilfield but also provides an innovative solution for the economic exploitation of global deepwater marginal oil and gas fields.

参考文献/References:

[1] IEA. World energy outlook 2022[R/OL].(2022-10)[2025-01-02]. https://www.iea.org/reports/world-energy-outlook-2022.
[2] Bie X W,Yang Q H ,Liao X W,et al. Key technologies for developing marginal oil fields in offshore China[C/OL]//Off?shore Technology Conference Aisa. Kuala Lumpur,Malaysia:the Offshore Technology Conference,2014[2025-01-27]. 10.4043/24677-MS.
[3] Carpenter C. Development optimization of a marginal oil field in Bohai Bay,China[J]. J Pet Technol 2014(66):111-113.
[4]金秋,张国忠.世界海洋油气开发现状及前景展望[J].国际石油经济,2005,13(3):43-44+57.
[5] Smith R J. Extended-reach drilling:A decade of technical evolution[J]. SPE Drilling&Completion,2021,36(03),567-581.
[6]张海山.中国海洋石油大位移井钻井技术现状及展望[J].石油钻采工艺,2023,45(01):1-11.
[7] Muecke N,Wroth A,Zharkeshov S,et al. Extended-reach drilling to maximize recovery from a mature asset:a case study[J].SPE Drilling&Completion,2018,33(4):194000.
[8]林昕,程仲,丁翔翔,等.基于机器学习的地质导向智能辅助决策系统开发研究[C]//中国海油2019年钻采专业学术年会论文集.北京:中海油研究总院有限责任公司,2019.
[9]彭光荣,陈淑慧,李洪博,等.珠江口盆地惠州凹陷复合岩浆岩潜山储层发育机制[J].地球科学,2025,50(2):419-432.
[10]路保平,倪卫宁.高精度随钻成像测井关键技术[J].石油钻探技术,2019,47(3):148-155.
[11] He L,Gao Y,Chang B,et al. Certainty based on ultradeep reservoir mapping service to cost-effectively manage the uncertainties affecting the redevelopment of the deepwater oil reservoir[C/OL]//Offshore Technology Conference Aisa. Kuala Lumpur, Malaysia: the Offshore Technology Conference,2014[2025-01-27]. 10.4043/31676-MS.
[12] Seydoux J,Denichou J M,Amir I,et al. Real-time EM look-ahead:A maturing technology to decrease drilling risk in low inclination wells[C/OL]//SPWLA 60th Annual Logging Symposium,2019[2025-01-27]. 10.30632/T60ALS-2019_GGGG.
[13] Sun,K,Thiel M,Mirto E,et al. New generation of ultra-high definition directional propagation resistivity for real time reservoir characterization and geosteering-while-drilling[C/OL]//the SPE Middle East Oil&Gas Show and Conference, 2021[2025-01-27]. https://doi.org/10.2118/204739-MS.
[14] Xie H,Sun K,Gremillion J,et al. An advanced ultrahigh-definition directional electromagnetic propagation logging tool for mapping while drilling and multilayered formation evaluation[J]. SPWLA-Society of Petrophysicists and Well Log Analysts,2022:SPWLA-2022-0050.

备注/Memo

备注/Memo:
收稿日期:2025-01-12
作者简介:李元元(1986-),男,工程师,主要从事开发项目设计、实施研究和管理。E-mail:liyy54@cnooc.com.cn
更新日期/Last Update: 2025-03-30