[1]魏晓刚,法靖宇,杨柳川,等.悬挂网壳结构风压分布的环境影响因素研究[J].华南地震,2023,(01):1-13.[doi:10.13512/j.hndz.2023.01.01]
 WEI Xiaogang,FA Jingyu,YANG Liuchuan,et al.Study on Environmental Factors Affecting Wind Pressure Distribution of Suspended Reticulated Shell Structure[J].,2023,(01):1-13.[doi:10.13512/j.hndz.2023.01.01]
点击复制

悬挂网壳结构风压分布的环境影响因素研究()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年01期
页码:
1-13
栏目:
土木工程防震减灾
出版日期:
2023-03-20

文章信息/Info

Title:
Study on Environmental Factors Affecting Wind Pressure Distribution of Suspended Reticulated Shell Structure
文章编号:
1001-8662(2023)01-0001-13
作者:
魏晓刚12法靖宇13杨柳川13李广慧14刘书贤5
1.郑州航空工业管理学院土木建筑学院,郑州 450046;2.中国地震局工程力学研究所中国地震局地震工程与工程振动重点实验室,哈尔滨 150080;3.郑州意合达建筑科技研究院,郑州 450046;4.河南水利与环境职业学院,郑州450046;5.辽宁工程技术大学土木工程学院,辽宁 阜新 123000
Author(s):
WEI Xiaogang12FA Jingyu13YANG Liuchuan13LI Guanghui14LIU Shuxian5
1.College of Civil Engineering and Architecture , Zhengzhou University of Aeronautics , Zhengzhou 450046, China;2.Key Laboratory of Earthquake Engineering and Engineering Vibration , Institute of Engineering Mechanics, China Earthquake Administration , Harbin 150080, China;3.Institute of Civil Engineering of Realization in Zhengzhou , Zhengzhou 450046, China;4.Henan Vocational College of Water Conservancy And Environment, Zhengzhou 450046;5.College of Architecture and Civil Engineering , Liaoning Technical University , Fuxin 123000, China
关键词:
台风悬挂网壳数值模拟环境因素
Keywords:
TyphoonSuspended reticulated shellsNumerical simulationEnvironmental factors
分类号:
TU33+2
DOI:
10.13512/j.hndz.2023.01.01
文献标志码:
A
摘要:
为了研究环境因素对机场大跨度悬挂网壳结构风荷载分布特性的影响,通过在SSTk-ω湍流模型的基础上结合CFD技术对悬挂网格结构进行风洞试验数值模拟,验证了数值模拟方法的准确性并对比研究了周边建筑、围护结构、地势高低与支撑结构等不同环境因素下悬挂网壳风荷载分布规律,发现:周边建筑可以对风荷载起到遮挡效果,降低网壳表面风压,遮挡效果随着夹角的增大逐渐衰弱;有围护结构的封闭式悬挂网壳较开放式悬挂网壳存在更大的风压梯度,在一定程度上可以提高结构承风能力,但对于非规则网壳结构无规律可循,故在实际工程中,需根据情况具体分析;随着悬挂网壳结构所处地势高度的增加,其受到风压的影响程度有一定的增幅,但当地势变化差异不大时,结构受风扰动不明显;拱梁对结构表面风压分布趋势影响较小,对风荷载起到了遮挡作用,可以降低悬挂网壳结构风压系数值。
Abstract:
In order to study the influence of environmental factors on the wind load distribution characteristics of long-span suspended reticulated shell structure in airport,based on SST k-ω Rayleigh model and CFD technology, the wind tunnel test numerical simulation of the suspended reticulated shell structure was carried out, and the accuracy of the numerical simulation method was verified. The wind load distribution law of the suspended reticulated shell under different environmental factors such as surrounding buildings, enclosure structures, topography and supporting structures was comparatively studied. It is found that the surrounding buildings can shield the wind load and reduce the wind pressure on the surface of the reticulated shell,and the shielding effect gradually weakens with the increase of the included angle. Compared with the open suspended reticulated shell, the closed suspended reticulated shell with enclosure structure has larger wind pressure gradient, which can improve the wind bearing capacity of the structure to a certain extent. However, there is no rule for irregular reticulated shell structure, so it needs to be analyzed according to the actual situation. With the increase of the terrain height of the suspended reticulated shell structure, the influence degree of wind pressure increases to a certain extent,but when the terrain changes little,the structure is not obviously disturbed by wind. The arch has little influence on the distribution trend of wind pressure on the structure surface, plays a role in shielding the wind load,and can reduce the wind pressure coefficient of the suspended reticulated shell structure.

参考文献/References:

[1]霍林生,赵伟,陈超豪.下击暴流作用下单层球面网壳倒塌破坏研究[J].防灾减灾工程学报,2022,42(02):354-361+382.
[2]赵仕兴,杨姝姮,郭宇航,等.成都市锦城广场大跨度钢木组合屋盖结构分析与设计[J].空间结构,2021,27(04):62-70.
[3]舒赣平,潘睿,王四清,等.张家界马戏城主馆带悬挂子结构的弦支穹顶屋盖抗连续倒塌分析与评估[J].建筑结构, 2022,52(16):37-44.
[4] Qiu Ye,He Haiyun,Xu Chen,et al. Aerodynamic optimization design of single-layer spherical domes using kriging surrogate model[J]. Advances in Structural Engineering, 2021,24(10):2105.
[5] Lu Wei,Wang Junlin,Hua Guo,et al. Wind-induced dynamic collapse analysis of single-layer cylindrical reticulated shells considering roof slabs and support columns [J]. International Journal of Heat and Technology,2020,38 (1):180-186.
[6]田浦.台风风谱的研究[C]//第二届全国结构风效应学术会议论文集. 北京:中国土木工程学会,1988.
[7]石沅,陆威,钟严.上海地区台风结构特征研究[C]//第二届全国结构风效应学术会议论文集.北京:中国土木工程学会,1988.
[8] Architectural Institute of Japan. AIJ Recommendations for Loads on Building[S]. Tokoy: Architectural Institute of Japan,1996.
[9]中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009-2012 [S].北京:中国建筑工业出版社,2012.
[10]高富东,潘存云,蔡汶珊,等.基于CFD的螺旋桨敞水性能数值分析与验证[J]. 机械工程学报,2010,46(08):133-139.
[11]黄胜,王超,王诗洋.不同湍流模型在螺旋桨水动力性能计算中的应用与比较[J].哈尔滨工程大学学报,2009,30 (05):481-485.
[12]殷志祥,侯立阳.台风作用下悬挂网壳风荷载特性的数值模拟研究[J].工业建筑,2015,45(06):133-136+164.
[13]吴春鹏.非平稳非高斯风荷载的数值模拟[D].南昌:华东交通大学,2016.
[14] Richards P J,Hoxey R P,Short L J. Wind pressures on a 6 m cube[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(14/15):1553-1564.
[15] Norbert H?lscher,Hans-Jürgen Niemann. Towards quality assurance for wind tunnel tests:A comparative testing program of the Windechnologische Gesellschaft[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998 (74/76):599-608.
[16]姚志东.基于数值模拟方法的大跨度结构表面风荷载的计算与分析[D].北京:北京交通大学,2008.

相似文献/References:

[1]张翼,金波,郑涛.单桩式基础海上风电塔强振分析[J].华南地震,2020,40(04):133.[doi:10.13512/j.hndz.2020.04.018]
 ZHANG Yi,JIN Bo,ZHENG Tao.Strong Vibration Analysis of Single-pile Foundation Offshore Wind Power Tower[J].,2020,40(01):133.[doi:10.13512/j.hndz.2020.04.018]

备注/Memo

备注/Memo:
收稿日期:2022-09-10
基金项目:国家自然科学基金资助(41902266);中原科技创新领军人才项目(194200510015);河南省高校青年骨干教师培养计划(2021GGJS116);河南省高校实验室工作研究会研究项目计划支持(ULAHN202108);河南省科技攻关项目(202102300964,202102310256,232102320052,232102240027);河南省高等学校重点科研项目(23A440002);教育部产学合作协同育人项目(202102600007)。
作者简介:魏晓刚(1984-),男,博士,副教授,研究方向:建筑结构抗震与防灾。E-mail:zzxmwxg@163.com
通信作者:李广慧(1970-),男,博士,二级教授,研究方向:工程结构抗震与防灾。E-mail:zzulgh@163.com

更新日期/Last Update: 2023-03-20