[1]张 萍,李 垠,吕 筱,等.基于U-Net网络的秭归县建筑物影像识别与空间化[J].华南地震,2024,(04):33-39.[doi:10.13512/j.hndz.2024.04.04]
ZHANG Ping,LI Yin,LYU Xiao,et al.Image Recognition and Spatialization of Buildings in Zigui County Based on U-Net Network[J].,2024,(04):33-39.[doi:10.13512/j.hndz.2024.04.04]
点击复制
基于U-Net网络的秭归县建筑物影像识别与空间化()
华南地震[ISSN:1006-6977/CN:61-1281/TN]
- 卷:
-
- 期数:
-
2024年04期
- 页码:
-
33-39
- 栏目:
-
地震科学研究
- 出版日期:
-
2024-12-30
文章信息/Info
- Title:
-
Image Recognition and Spatialization of Buildings in Zigui County Based on U-Net Network
- 文章编号:
-
1001-8662(2024)04-0033-07
- 作者:
-
张 萍1; 2; 李 垠1; 2; 吕 筱1; 2; 张亦梅1; 2; 特木其勒1; 2
-
1.中国地震局地震研究所 地震大地测量重点实验室,武汉 430071;2.湖北省地震局,武汉 430071
- Author(s):
-
ZHANG Ping1; 1; 2; LI Yin1; 1; 2; LYU Xiao1; 1; 2; ZHANG Yimei1; 1; 2; TEMU Qile1; 1; 2
-
1.430071, China;2.Hubei Earthquake Agency , Wuhan 430071, China
-
- 关键词:
-
U-Net; 遥感影像; 房屋空间化; 地震灾情; 快速评估
- Keywords:
-
U-Net; Remote sensing image; Building spatialization; Earthquake disaster; Rapid assessment
- 分类号:
-
P315.9
- DOI:
-
10.13512/j.hndz.2024.04.04
- 文献标志码:
-
A
- 摘要:
-
基于更新地震应急基础数据库的需求,为快速获取区域建筑物基础信息数据,提出一种建筑物数据空间化方法:利用U-Net全卷积神经网络模型从遥感影像上提取建筑物信息,通过GIS技术将提取的建筑物数据空间网格化,从而获得建筑物空间化格网数据库。以秭归县为研究区域,验证了方法的可行性,所得结果更好地反映了房屋的实际分布情况,为提高地震灾害损失快速评估的精度和准确性奠定基础,为地震应急工作提供更有效的数据支撑。
- Abstract:
-
Based on the demand to update the earthquake emergency foundation database,a spatialization method of building data was proposed to quickly obtain the basic information data of buildings within the study area. The building information was extracted from the remote sensing images by using the U-Net full convolutional neural network model,and the GIS technology was used to change the extracted building data into spatial grid data,so as to obtain a spatialized grid database of buildings. Taking Zigui County as the study area, the feasibility of the method was verified. The results obtained can better reflect the actual distribution of buildings,laying a foundation for improving the precision and accuracy of rapid assessment of earthquake disaster losses and providing more effective data support for earthquake emergencies.
参考文献/References:
[1]何萍,陈修吾,何霆.基于GIS的东莞市地震灾害评估系统的设计与实现[J].华南地震,2017,37(3):9-17.
[2]徐敬海,安基文,聂高众.基于千米格网的地震应急灾情预评估数据开发[J].地震地质,2016,38(3):760-772.
[3]孙艳萍,陈文凯,张苏平,等.基于居民点密度的人口空间化及在四川九寨沟7.0级地震中的应用[J].地震工程学报,2018,40(S1):174-179.
[4] Meng Y. A stacking ensemble deep learning model for building extraction from remote sensing images[J]. Remote Sensing,2021,13(19):3898.
[5]韩贞辉,李志强,陈振拓,等.人口、房屋数据空间化及其在震灾快速评估中的应用——以彝良地震为例[J].地震地质,2013,35(4):894-906.
[6]谷国梁,王晓蕾,李雅静,等.天津市面向震害快速评估的房屋和人口空间化研究[J].地震,2016,36(2):149-158.
[7]李皓,张合,吕国军.基于遥感影像的建筑数据构建研究[J].震灾防御技术,2018,13(1):168-176.
[8]张翠军,安冉,马丽.改进U-Net的遥感图像中建筑物变化检测[J].计算机工程与应用,2021,57(3):239-246.
[9] Long J,Shelhamer E,Darrell T. Fully convolutional net?works for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recogni?tion. Boston,MA:IEEE,2015:3431-3440.
[10] Ronneberger O,Fischer P,Brox T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceed?ings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany:Springer,2015:234-241.
[11] Zhou Z W,Siddiquee M M R,Tajbakhsh N,et al. UNet++:a nested U-Net architecture for medical image segmentation [C]//Proceedings of the 8th International Workshop on Deep Learning in Medical Image Analysis. Granada:Springer, 2018:3-11.
[12]吕少云,李佳田,阿晓荟,等. Res_ASPP_UNet++:结合分离卷积与空洞金字塔的遥感影像建筑物提取网络[J].遥感学报,2023,27(2):502-519.
相似文献/References:
[1]何家乐.基于无人机遥感影像的地震形变场三维测量方法[J].华南地震,2019,39(04):34.[doi:10.13512/j.hndz.2019.04.005]
HE Jiale.The 3d Measurement Method of Seismic Deformation Field Based on UAV Remote Sensing Image[J].,2019,39(04):34.[doi:10.13512/j.hndz.2019.04.005]
备注/Memo
- 备注/Memo:
-
收稿日期:2023-11-23
基金项目:中国地震局地震研究所基本科研业务费专项资助项目和中国地震局地壳应力研究所基本科研业务费专项资助项目(306337-12);湖北省地震局基础科研基金项目(2022HBJJ012)联合资助。
作者简介:张萍(1993-),女,工程师,主要从事地震监测与应急工作。E-mail:zping@whu.edu.cn
通信作者:李垠(1979-),女,高级工程师,主要从事地震应急与灾情评估方面的工作。E-mail:yubai1979@qq.com
更新日期/Last Update:
2024-12-30