参考文献/References:
[1] Neuland, Herbert. A prediction model of landslips[J]. Catena,1976,3(2),215-230[2] Rasmussen C E,Nickisch H. Gaussian processes for machine learning (GPML)toolbox[J]. Journal of Machine Learning Research,2010,11(6),3011-3015[3] Chen Weitao,Li Xianju,Wang Yanxin,et al. Forested landslide detection using LiDAR data and the random forest algorithm: a case study of the Three Gorges, China[J]. Remote Sensing of Environment,2014(152):291-301.[4] Amiri M,Pourghasemi H R,Ghanbarian G A,et al. Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms[J]. Geoderma,2019(340):55-69.[5] Abu El-magd S A,Ali S A,Pham Q B. Spatial modeling and susceptibility zonation of landslides using random forest, na?ve bayes and K-nearest neighbor in a complicated terrain [J]. Earth Science Informatics,2021,14(3):1227-1243.[6] Van Den Eeckhaut M,Marre A,Poesen J. Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region(France)[J]. Geomorphology,2010,115(1/2):141-155.[7] Zhou C,Yin K L,Cao Y,et al. Landslide susceptibility modeling applying machine learning methods:a case study from Longju in the Three Gorges Reservoir area,China[J]. Computers&Geosciences,2008(112):23-37.[8]付旭东,王金艳,李龙燕,等.基于随机森林算法的风场预报[J].兰州大学学报(自然科学版),2021,57(4):503-509.[9] Sajadi P,Sang Y F,Gholamnia M,et al. Evaluation of the landslide susceptibility and its spatial difference in the whole Qinghai-Tibetan Plateau region by five learning algorithms [J]. Geoscience Letters,2022(9):1-25.[10] Sun D L,Gu Q Y,Wen H J,et al. A hybrid landslide warning model coupling susceptibility zoning and preci-pitation[J]. Forests,2022,13(6):827.[11]郭明珠,刘晃,王欢欢,等.金沙江上游贡扎村岩质滑坡发育特征及演化成因分析[J].地震研究,2021,44(2):242-250.[12] Reshef D N,Reshef Y A,Finucane H K,et al. Detecting novel associations in large data sets[J]. Science,2011,334 (6062):1518-1524.[13] Guyon I,Weston J,Barnhill S,et al. Gene selection for cancer classification using support vector machines[J]. Machine learning,2022,46(1-3):389-422.[14]姚登举,杨静,詹晓娟.基于随机森林的特征选择算法[J].吉林大学学报(工学版),2014,44(1):137-141.[15] Breiman L. Random forests[J]. Machine Learning,2001,45 (1):5-32.[16]刘坚,李树林,陈涛.基于优化随机森林模型的滑坡易发性评价[J].武汉大学学报(信息科学版),2018,43(07):1085-1091.[17]姚雄,余坤勇,刘健,等.基于随机森林模型的降水诱发山体滑坡空间预测技术[J].福建农林大学学报(自然科学版),2016,45(02):219-227.[18] Wang L Q,Zhang Z H,Huang B L,et al. Triggering mechanism and possible evolution process of the ancient Qingshi landslide in the Three Gorges Reservoir[J]. Geomatics Natural Hazards & Risk,2021,12(1):3160-74.[19] Zhang K Q,Wang L Q,Zhang W G,et al. Formation and failure mechanism of the Xinfangzi landslide in Chongqing City(China)[J]. Applied Sciences,2021,11(19):8693[20]白仙富,戴雨芡,叶燎原,等.基于GIS和专家知识的滇西南地区滑坡敏感性模糊逻辑推理方法[J].地震研究, 2022,45(1):118-131.[21] Li L,Lan H,Guo C,et al. A modified frequency ratio method for landslide susceptibility assessment[J]. Landsli-des,2016,14(2):727-741.[22] Long J J,Liu Y,Li C D,et al. A novel model for regional susceptibility mapping of rainfall reservoir induced landslides in Jurassic slide-prone strata of western Hubei Province, Three Gorges Reservoir area[J]. Stochastic Environmental Research and Risk Assessment,2021,35 (7):1403-26.[23] Sun D L,Xu J H,Wen H J,et al. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization:a comparison between logistic regression and random forest[J]. Engineering Geology,2021(281):105792.[24] Zhou X Z,Wen H J,Li Z W,et al. An interpretable model for the susceptibility of rainfall-induced shallow landslides based on shap and xgboost[J]. Geocarto International,2022, 37(23):1-27.[25] Weiss A. Topographic position and landforms analysis[R]. San Diego,CA :ESRI user conference,2001.[26]叶润青,李士垚,郭飞,等.基于RS和GIS的三峡库区滑坡易发程度与土地利用变化的关系研究[J].工程地质学报,2021,29(03):724-33.[27] Gariano S L,Rianna G,Petrucci O,et al. Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale[J]. Sci Total Environ,2017(596/597):417-426 .[28] He Q,Shahabi H,Shirzadi A, et al. Landslide spatial modelling using novel bivariate statistical based Naive Bayes,RBF Classifier,and RBF Network machine learning algorithm[J]. Sci Total Environ,2019(663):1-15.[29] Juliev M,Mergili M,Mondal I,et al. Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan[J]. Sci Total Environ, 2019(653):801-814.
相似文献/References:
[1]邱慧玲,龙文华,卿展晖.模糊数学在滑坡治理工程后评价中的应用[J].华南地震,2023,(04):75.[doi:10.13512/j.hndz.2023.04.10]
QIU Huiling,LONG Wenhua,QING Zhanhui.Application of Fuzzy Mathematics in Post-evaluation of Landslide Treatment Project[J].,2023,(02):75.[doi:10.13512/j.hndz.2023.04.10]
[2]李 圣,卿元华,庄儒新,等.考虑历史地震烈度的楚雄州滑坡发育特征分析[J].华南地震,2024,(02):52.[doi:10.13512/j.hndz.2024.02.07]
LI Sheng,QING Yuanhua,ZHUANG Ruxin,et al.Analysis of Landslide Development Characteristics in Chuxiong Yi Autonomous Prefecture Considering Historical Earthquake Intensity[J].,2024,(02):52.[doi:10.13512/j.hndz.2024.02.07]