[1]侯 凯,熊书权,万年辉,等.海上油田薄储层预测技术研究[J].华南地震,2022,(01):97-103.[doi:10.13512/j.hndz.2022.01.13]
 HOU Kai,XIONG Shuquan,WAN Nianhui,et al.Research on Prediction Technology of Thin Reservoirs in Offshore Oilfield[J].,2022,(01):97-103.[doi:10.13512/j.hndz.2022.01.13]
点击复制

海上油田薄储层预测技术研究()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年01期
页码:
97-103
栏目:
海洋地球物理
出版日期:
2022-03-30

文章信息/Info

Title:
Research on Prediction Technology of Thin Reservoirs in Offshore Oilfield
文章编号:
1001-8662(2022)01-0097-07
作者:
侯 凯熊书权万年辉刘 平李勇锋梁全权杨小江
中海石油(中国)有限公司深圳分公司,深圳 518000
Author(s):
HOU KaiXIONG ShuquanWAN NianhuiLIU PingLI YongfengLIANG QuanquanYANG Xiaojiang
Research Institute , CNOOC Ltd., Shenzhen 518000,China
关键词:
薄层预测神经网络曲线模拟敏感参数构建地震波形相控模拟
Keywords:
Thin layer predictionNeural network curve simulationSensitive parameters constructionSeismic waveform driving inversion
分类号:
P618.13;P631.4
DOI:
10.13512/j.hndz.2022.01.13
文献标志码:
A
摘要:
针对南海东部A油田钻井资料少,储层预测不确定性大的难题,探索了神经网络曲线模拟方法,模拟生产井的声波曲线,增加地震反演的井控程度,提升储层预测准确性。同时针对油田3~5m的薄层数量多、储量占比大、非均质强的问题,讨论了一种地震波形相控模拟方法,该方法在提高储层预测纵向分辨率的同时,也有较为可靠的横向分辨率,体现了地震波形特征,符合地层的地质沉积规律,有效的减少了反演的随机性,为海上油田薄层油藏的增产挖潜提供了有力支持。
Abstract:
Aiming at the problem of less drilling data and large uncertainty of reservoir prediction in A oilfield in the eastern South China Sea,this paper explores the use of neural network learning method to simulate the acoustic curve of production wells,and increase the well control of seismic inversion and improve the accuracy of reservoir prediction. At the same time, for the problems of large number of thin layers, large proportion of reserves and strong heterogeneity during 3-5 m of A oilfield in the east of the South China Sea,a seismic waveform controlled inversion method is discussed. This method not only improves the vertical resolution of reservoir prediction, but also has a more reliable horizontal resolution,which reflects the characteristics of seismic wave shape,conforms to the geological sedimentary law of the formation,effectively reduces the randomness of inversion,and provides strong support for increasing production and tapping potential of thin reservoir in offshore oilfield.

参考文献/References:

[1]陈彦虎,毕建军,邱小斌,等.地震波形指示反演方法及其应[J].石油勘探与开发,2020,47(6):1149-1158.
[2]赵政璋,赵贤正,王英民.地震储层预测理论与实践[M].北京:石油工业出版社,2005:1-10.
[3]杨文采.非线性地震反演方法的补充及比较[J].石油物探, 1995,34(4):109-116.
[4]李雪英,李东庆,白诗缘.薄层研究方法综述[J].地球物理学进展,2017,29(5):2197-2203.
[5]杨占龙,肖冬生,周隶华,等.高分辨率层序格架下的陆相湖盆精细沉积体系研究:以吐哈盆地西缘侏罗系—古近系为例[J].岩性油气藏,2017,29(5):1-10.
[6]石战战,王元君,唐湘蓉,等.一种基于时频域波形分类的储层预测方法[J].岩性油气藏,2018,30(4):98-104.
[7]杨希濮,杨小丽,刘钧,等.一体化储层精细分类方法在非均质储层定量表征中的应用[J].岩性油气藏,2017,29(1):124-129.
[8]王宗俊,董洪超,范廷恩,等.基于无监督学习的测井岩相分析技术及其应用[J].石油物探,2021,60(3):403-413. 10.3969/j.issn.1000-1441.2021.03.006.
[9]林年添,付超,张栋,等.无监督与监督学习下的含油气储层预测[J].石油物探,2018,57(4):601-610
[10] FRANCIS A. Limitations of deterministic and advantages of stochastic seismic inversion[J]. CSEG Recorder,2005,30 (2):5-11.
[11] WIDESS M. How thin is a thin bed[J]. Geophysics,1973,38 (6):1176-1180.
[12]曾洪流,朱筱敏,朱如凯,等.陆相坳陷型盆地地震沉积学研究规范[J].石油勘探与开发,2012,39(3):275-284.
[13]杨涛,乐友喜,吴勇.波形指示反演在储层预测中的应用[J].地球物理学进展,2018,33(2):769-776.
[14]梁杰,陈维涛,罗明,等.地震波形指示反演在珠江口盆地A油田薄层预测中的应用[J]. 物探化探计算技术, 2019,41(3):1-7.
[15]刘化清,苏明军,倪长宽,等.薄砂体预测的地震沉积学研究方法[J].岩性油气藏,2018,30(2):1-11.
[16]杨志力,周路,彭文利,等. BP神经网络技术在声波测井曲线重构中的运用[J].西南石油大学学报(自然科学版), 2008,30(1):63-66.
[17]张永军,程超,梁涛,等.基于BP神经网络的测井曲线构建[J].西部探矿工程,2006,18(2):82-85.

备注/Memo

备注/Memo:
收稿日期:2021-08-10
作者简介:侯凯(1987-),男,研究生,工程师,主要从事地震解释研究。E-mail:houkai4@cnooc.com.cn
更新日期/Last Update: 2022-03-30