[1]巫立华,张宝剑,林彬华,等.BP神经网络在地震噪声波形检测中的应用[J].华南地震,2021,41(03):116-121.[doi:10.13512/j.hndz.2021.03.16 ]
 WU Lihua,ZHANG Baojian,LIN Binhua,et al.Application of BP Neural Network in Seismic Noise Waveform Detection[J].,2021,41(03):116-121.[doi:10.13512/j.hndz.2021.03.16 ]
点击复制

BP神经网络在地震噪声波形检测中的应用()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2021年03期
页码:
116-121
栏目:
地震科学研究
出版日期:
2021-09-20

文章信息/Info

Title:
Application of BP Neural Network in Seismic Noise Waveform Detection
文章编号:
1001-8662(2021)03-0116-06
作者:
巫立华张宝剑林彬华戴丽金张丽娜
(福建省地震局,福州 350003)
Author(s):
WU LihuaZHANG BaojianLIN BinhuaDAI LijinZHANG Lina
(Fujian Earthquake Agency,Fuzhou 350003,China)
关键词:
BP神经网络地震噪声加速度功率谱密度检测
Keywords:
BP neural networkSeismic noiseAcceleration power spectral densityDetection
分类号:
U452.28
DOI:
10.13512/j.hndz.2021.03.16
文献标志码:
A
摘要:
为实现自动检测地震噪声波形是否异常,提出应用BP神经网络技术进行地震噪声波形检测。选取福建地震台网88个测震台站2018-2019年的地震噪声原始波形,计算波形的加速度功率谱密度(PSD)值作为神经网络的输入特征值,在MATLAB中构建BP神经网络进行学习训练和仿真测试。测试验证了训练后的BP神经网络模型具备了可靠的地震噪声波形是否异常的检测能力。应用BP神经网络检测地震噪声波形免去了人工判断的工作,实现全自动处理,提高了检测效率,为今后地震噪声波形质量自动监控提供了新的技术方法。
Abstract:
In order to automatically detect whether the seismic noise waveform is normal,the paper proposes theapplication of BP neural network technology to detect seismic noise waveform.The paper chooses seismic noisewaveform of 88 seismic stations in Fujian Seismic Network from 2018 to 2019, calculates acceleration power spectral density(PSD)as input characteristic value of neural network, and constructs BP neural network in MATLAB for training and simulation.The result of simulation verifies that the trained BP neural network model hasreliable ability to detect whether the seismic noise waveform is abnormal.The method of detecting seismic noisewaveform using BP neural network avoids the work of manual judgment,realizes automatic processing,improves the detection efficiency,and provides a new technical method for automatic monitoring of seismic noise waveform quality in the future.

参考文献/References:

[1]王芳,王伟涛,龙剑锋,等 .中国大陆地区宽频带地震台网台基噪声特点 [J].地震学报, 2019,41(5):569-582. [2]Peterson Jon. Observations and modeling of seismic back­ground noise[R]. Virginia: U.S. Geological Survey,1993. [3]Sleeman. Towards an automated quality control manager forthe virtual european broadband seismograph network[J].Orfeus Newsletter,2007,7(1):5-16. [4]廖诗荣,陈绯雯 .应用概率密度函数方法自动处理地震台站勘选测试数据 [J].华南地震, 2008,28(4):82-92. [5]林彬华,金星,廖诗荣,等 .地震噪声异常实时监测 [J].中国地震, 2015,31(2):281-289. [6]Pulli, Dysart. An experimentin the use of trained neuralnetworksfor regisonal seismic event classification[J]. Geophysical Research Letters,1990,17(2),997-980. [7]Thibaut Perol, Michael Gharbi, Marine Denolle. Con­volutional neural network for earthquake detection andlocation[J]. Science Adances,2018,4(2),1-8. [8]边银菊 .遗传 BP网络在地震和爆破识别有的应用 [J].地震学报, 2002,24(5):516-524. [9]林彬华,金星,陈惠芳,等 .基于反向传播神经网络的闽台 M震级偏差分析与修正 [J].地震学报, 2019,41(6):723-734. [10]McNamara D.E, Boaz R.I. Seismic noise analysis system using power spectral density probability density functions:a stand-alone software package[R]. Virginia: U. S.Geological Survey,2005. [11]Bormann.New manual of seismological observatory pract-ictice[J].Geo Forschungs Zentrum Potsdam,2002,4(11): 5-7. [12]阎平凡,张长水 .人工神经网络与模拟退化计算 [M].北京:清华大学出版社, 2005. [13]陈明 . MATALAB神经网络原理与实例精讲 [M].北京:清大学出版社, 2013.

相似文献/References:

[1]牛洪涛.陕南地区土岩接触带滑坡地质灾害预测模型构建[J].华南地震,2019,39(04):19.[doi:10.13512/j.hndz.2019.04.003]
 NIU Hongtao.Establishment of Landslide Geological Disaster Prediction Model in Soil-rock Contact Zone in Southern Shaanxi[J].,2019,39(03):19.[doi:10.13512/j.hndz.2019.04.003]
[2]巫立华,戴丽金,张丽娜,等.地震台站勘选测试数据处理软件设计与应用[J].华南地震,2021,41(02):40.[doi:10.13512/j.hndz.2021.02.06 ]
 WU Lihua,DAI Lijin,ZHANG Lina,et al.Design and Application of Seismic Noise Processing Software for Seismic Sit Selection[J].,2021,41(03):40.[doi:10.13512/j.hndz.2021.02.06 ]

备注/Memo

备注/Memo:
收稿日期:2020-12-20
基金项目:福建省地震局科技基金(编号:SF202009)
作者简介:巫立华(1985-),男,工程师,主要从事地震台网运维。 E-mail:uuhua_w@163.com

更新日期/Last Update: 2021-09-30