[1]郭金龙,代学灵,肖三霞,等.地震下钢纤维页岩陶粒混凝土动态抗压强度数值模拟分析[J].华南地震,2020,40(04):119-126.[doi:10.13512/j.hndz.2020.04.016]
 GUO Jinlong,DAI Xueling,XIAO Sanxia,et al.Numerical Simulation of Dynamic Compressive Strength of Steel Fiber Shale Ceramsite Concrete Under Seismic[J].,2020,40(04):119-126.[doi:10.13512/j.hndz.2020.04.016]
点击复制

地震下钢纤维页岩陶粒混凝土动态抗压强度数值模拟分析()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2020年04期
页码:
119-126
栏目:
土木工程防震减灾
出版日期:
2020-12-30

文章信息/Info

Title:
Numerical Simulation of Dynamic Compressive Strength of Steel Fiber Shale Ceramsite Concrete Under Seismic
文章编号:
1001-8662(2020)04-00119-08
作者:
郭金龙1代学灵1肖三霞1陈峰1林键辉2张平平3
1.福建江夏学院 工程学院,福州 350108;2.华辉建工集团有限公司,福州 350800;3.福建卓越鸿昌环保智能装备股份有限公司,福建 泉州 362300
Author(s):
GUO Jinlong1DAI Xueling1XIAO Sanxia1CHEN Feng1LIN Jianhui2ZHANG Pingping3
1.School of Civil Engineering,Fujian Jiangxia University,Fuzhou 350108,China;2.Huahui Construction Engineering Corporation,Fuzhou 350000,China;3.Fujian Zhuoyuehongchang Environmental Protection Intelligent Equipment Corporation,Quanzhou 362300,China
关键词:
钢纤维掺量连续盖帽本构模型数值模拟动态抗压强度动力放大系数
Keywords:
Content of steel fiberCSCM constitutive modelNumerical simulationDynamic compressive strengthDynamic increase factor
分类号:
TU37
DOI:
10.13512/j.hndz.2020.04.016
文献标志码:
A
摘要:
利用连续盖帽(CSCM)本构模型,对钢纤维页岩陶粒混凝土的分离式霍普金斯压杆(SHPB)试验进行数值模拟,对其动态抗压强度进行分析。以材料的钢纤维掺量为基本参数,考虑钢纤维掺量的影响建立材料动态抗压强度计算公式,并依此对已有的CSCM本构模型中的应变率效应部分进行修正,使之适用于钢纤维页岩陶粒混凝土材料,同时运用有限元程序LS-DYNA,采用修正后的CSCM本构模型,对钢纤维页岩陶粒混凝土SHPB试验进行模拟。模拟结果验证了该本构模型的合理性,钢纤维页岩陶粒混凝土材料的动态抗压强度可表示为与钢纤维掺量相关的表达式,在应变率低于80/s的中低速率范围内,随着钢纤维掺量的增大,各应变率下钢纤维页岩陶粒混凝土动态抗压强度均有所提高,模拟结果还显示相较不考虑应变率效应的CSCM模型,考虑应变率效应修正后的CSCM模型能更精确地模拟钢纤维页岩陶粒混凝土材料的动态抗压强度。
Abstract:
In this paper,the CSCM constitutive model is used to simulate the SHPB test of steel fiber shale ceramsite concrete,and the dynamic compressive strength is analyzed. Taking the content of steel fiber as the basic parameter and considering the influence of content of steel fiber,the formula for calculating the dynamic compressive strength of the material is established,and the strain rate effect in the existing CSCM constitutive model is modified to make it suitable for steel fiber shale ceramsite concrete. At the same time,the modified CSCM constitutive model is adopted by the finite element program LS-DYNA. The SHPB test of steel fiber shale ceramsite concrete is simulated and analyzed. The simulation results verify the rationality of the modified CSCM model. The dynamic compressive strength of steel fiber shale ceramsite concrete can be expressed as an expression related to the content of steel fiber,and increases with the increase of content when the strain rate is under 80/s. Compared with the CSCM model without considering the strain rate effect,the modified CSCM model considering the strain rate effect can simulate the dynamic compressive strength of steel fiber shale ceramsite concrete more accurately.

参考文献/References:

[1]TianLei,QiuLiuchao,LiJingjun,etal.Experimentalstudyofwastetirerubber,wood-plasticparticlesandshaleceramsiteontheperformanceofself-compactingconcrete[J].JournalofRenewableMaterials,2020,8(2):154-170.
[2]ChenMeng,LiZhihao,WuJiangfei,etal.Shearbehaviouranddiagonalcrackcheckingofshaleceramsitelightweightaggregateconcretebeamswithhigh-strengthsteelbars[J].ConstructionandBuildingMaterials,2020,249(7):118730.
[3]于周平,詹培敏,杨伟军,等.页岩陶粒混凝土梁的受弯承载力试验研究[J].硅酸盐通报,2019,38(5):1433-1437.
[4]黄超,谷倩,王朝晖,等.页岩陶粒混凝土叠合板原型堆载试验研究[J].武汉理工大学学报,2016,38(10):61-67.
[5]顾聪,郑晓燕,张文华,等.钢筋-页岩陶粒轻骨料混凝土梁式黏结试验研究[J].铁道科学与工程学报,2017,14(3):528-535.
[6]权长青,焦楚杰,苏永亮,等.钢纤维及陶粒掺量对轻质混凝土基本力学性能的影响[J].复合材料学报,2018,35(5):1306-1314.
[7]曾志兴,胡云昌.钢纤维轻骨料混凝土力学性能的试验研究[J].建筑结构学报,2003,24(5):78-81.
[8]杨明宇,谢卫红.钢纤维页岩陶粒混凝土SHPB试验研究[J].混凝土与水泥制品,2015(12):54-57.
[9]ComiteEuro-InternationalduBétonCE.CEB-FIPModelCode1990:DesignCode[S].duBéton:duBétonCE,1993.
[10]Tedesco,JW,CA.Ross.Strain-rate-dependentconstitutiveequationsforconcrete[J].PressureVesselTechnology,1998,120(4):398-405.
[11]MurrayYD.UsersmanualforLS-DYNAconcretematerialmodel159[R].Georgetown:USDepartmentofTransportation,2007.
[12]RemennikovAM,KongSY.Numericalsimulationandvalidationofimpactresponseofaxially-restrainedsteel–concrete–steelsandwichpanels[J].CompositeStructures,2012,94(12):3546-3555.
[13]GuoJinlong,CaiJian,ChenWensu.InertialEffectonRCBeamSubjectedtoImpactLoads[J].InternationalJournalofStructuralStabilityandDynamics,2017,17(04):1750053.
[14]程文瀼,颜德姮.混凝土结构[M].北京:中国建筑工业出版社,2008.
[15]AbramsDA.Effectofrateofapplicationofloadonthecompressivestrengthofconcerete[J].ASTMJournal,1917,17(2):364-377.
[16]MalvernLE,JenkinsDA,TangTX.Dynamiccompressivetestingofconcrete[R].Florida:U.S.DepartmentofDefense,1985.
[17]HughesBP,WatsonAJ.Compressivestrengthandultimatestrainofconcreteunderimpactloading[J].Magazineofconcreteresearch,1978,105(30):189-199.
[18]EvansRH.EffectofRateofloadingonthemechanicalpropertiesofsomematerials[J].JournaloftheInstitutionofCivilEngineers,1942,18(7):296-306.
[19]SparksPR,MenziesJB.Theeffectofrateofloadinguponthestaticandfatiguestrengthsofplainconcreteincompression[J].MagazineofConcreteResearch,1973,25(83):73-80.

备注/Memo

备注/Memo:
收稿日期: 2020-09-07
基金项目:福建省自然科学基金(2019J01885);福建省高校杰出青年科研人才培育计划(2018闽教科2018-47号);福建江夏学院国家基金培育项目(JXZ2019003)
作者简介:郭金龙(1988?),男,博士,讲师,研究方向为结构数值模拟分析。
E-mail: cvjlguo@fjjxu.edu.cn
更新日期/Last Update: 2020-12-20