[1]张少腾,余娟,刘晶,等.基于加权马氏距离法的砂土液化评级模型[J].华南地震,2020,40(04):79-84.[doi:10.13512/j.hndz.2020.04.011]
 ZHANG Shaoteng,YU Juan,LIU Jing,et al.Evaluation Model of Sand Soil Liquefaction based on Weighted Mahalanobis Distance Method[J].,2020,40(04):79-84.[doi:10.13512/j.hndz.2020.04.011]
点击复制

基于加权马氏距离法的砂土液化评级模型()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
40
期数:
2020年04期
页码:
79-84
栏目:
地震研究
出版日期:
2020-12-30

文章信息/Info

Title:
Evaluation Model of Sand Soil Liquefaction based on Weighted Mahalanobis Distance Method
文章编号:
1001-8662(2020)04-0079-06
作者:
张少腾1余娟1刘晶1高明智2李佩3刘飞4
1.徐州市数字地震台网中心,江苏 徐州 221000;2.徐州市地震台,江苏 徐州 221000;3.河南省地质矿产勘查开发局第四地质勘查院,郑州 450000;4.江苏省地质矿产局第五地质大队,江苏 徐州 221000
Author(s):
ZHANG Shaoteng1YU Juan1LIU Jing1GAO Mingzhi2LI Pei3LIU Fei4
1.Xuzhou Digital Seismic Network Center,Xuzhou 221000,China;2.Xuzhou Seismic Station,Xuzhou 221000,China;3.The Fourth Geological Exploration Institute of Henan Geological and Mineral Exploration and Development Bureau,Zhengzhou 450000,China;4.The Fifth Geological Team of Xuzhou,Xuzhou 221000,China
关键词:
砂土液化权重马氏距离判别法
Keywords:
Sand Soil LiquefactionWeightMahalanobis distance discriminant method
分类号:
TU435
DOI:
10.13512/j.hndz.2020.04.011
文献标志码:
A
摘要:
砂土液化判别可以有效预测地震砂土液化危险区,及时对危险区进行针对性处理,有助于保障生命与财产安全。通过马氏距离判别法和综合权重赋值相结合,建立基于砂土液化预测的判别模型,选取粒径、层厚、标贯击数作为砂土液化判别因子,运用综合权重法确定各因子的权重,将砂土液化样本分为轻微液化、中等液化以及严重液化三个等级,依据加权马氏距离液化判别模型求得样本液化等级。计算结果与工程实测结果对比显示,加权马氏距离模型进行砂土液化判别具有良好的效果,与实测结果有较强的一致性,和其他判别方法相比具有较低的误判率,可望成为砂土液化预测的有效手段。
Abstract:
Sand soil liquefaction discrimination can effectively predict liquefaction risk areas to target treatment of dangerous areas timely and help to ensure the safety of life and property. Through the combination of Mahala-nobis distance discrimination method and comprehensive weight assignment,the paper establishes a discriminant model based on sand liquefaction prediction. Selecting particle size,layer thickness,and standard penetration number as the sand liquefaction discriminating factors,and using the comprehensive weight method to determine each factor,the sand liquefaction sample is divided into three grades: light liquefaction,medium liquefaction and severe liquefaction,and the sample liquefaction grade is obtained according to the weighted Mahalanobis distance liquefaction discrimination model. The comparison between the calculated results and the measured results shows that the weighted Mahalanobis distance model has a good effect on sand liquefaction prediction,has a strong consistency with the measured results,and has a lower miscalculation rate compared with other judgment meth-ods,which is expected to become an effective means for sand liquefaction prediction.

参考文献/References:

[1]陈龙伟,袁晓铭,孙锐.2011年新西兰MW6.3地震液化及岩土震害述评[J].世界地震工程,2013,29(3):1-9.
[2]颜可珍,刘能源,夏唐代.基于判别分析法的地震砂土液化预测研究[J].岩土力学,2009,30(7):2049-2052.
[3]翁焕学.砂土地震液化模糊综台评判实用方法田[J].岩土工程学报,1993,15(2):74-79.
[4]蔡煌东,宫家文,姚林声.砂土液化预测的人工神经网络模型[J].岩土工程学报,1993,15(6):53-58.
[5]刘红军,薛新华.砂土地震液化预测的人工神经网络模型[J].岩土力学,2004,25(12):1942-1950.
[6]陈国兴,李方明.基于径向基函数神经网络模型的砂土液化概率判别方法[[J].岩土工程学报,2006,28(3):301-305.
[7]罗战友,龚晓南.基于经验的砂土液化灰色关联系统分析与评价[J].工业建筑,2002,32(11):36-39.
[8]周瑞林,刘燕,赵胜利.基于RBF神经网络的砂土液化预测[J].河南大学学报(自然科学版),2005,35(4):101-104.
[9]夏建中,罗战友,龚晓南,等.基于支持向量机的砂土液化预测模型[J].岩石力学与工程学报,2005,24(22):4139-4144.
[10]张荣祥,石兆吉.利用qc、D50评价砂土地震液化势研究[J].地震工程与工程振动,1995,15(1):100-109.
[11]翁焕学.砂土地震液化模糊综合评价实用方法[J].岩土工程学报,1993,5(2):74-79
[12]赵艳林,杨绿峰,吴敏哲.砂土液化的灰色综合评判[J].自然灾害学报,2000,9(1):72-79.
[13]朱建平.应用多元统计分析[M].北京:科学出版社,2011:43-47.
[14]唐启义.DPS数据处理系统[M].北京:科学出版社,2013:875-891.

备注/Memo

备注/Memo:
收稿日期: 2020-03-11
基金项目: 江苏省地震局青年科学基金(201809)
作者简介:张少腾(1990-),男,工程师,硕士,主要从事地震监测及预报工作。
E-mail: 453345671@qq.com
更新日期/Last Update: 2020-12-20