[1]毛巍颖.云南开远井和思茅大寨井水位同震响应动态差异分析[J].华南地震,2023,(04):48-56.[doi:10.13512/j.hndz.2023.04.07]
 MAO Weiying.Analysis of the Dynamic Differennce of Coseismic Response of Water Level Between Kaiyuan Well and Simao Dazhai Well in Yunnan[J].,2023,(04):48-56.[doi:10.13512/j.hndz.2023.04.07]
点击复制

云南开远井和思茅大寨井水位同震响应动态差异分析()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年04期
页码:
48-56
栏目:
地震科学研究
出版日期:
2023-12-30

文章信息/Info

Title:
Analysis of the Dynamic Differennce of Coseismic Response of Water Level Between Kaiyuan Well and Simao Dazhai Well in Yunnan
文章编号:
1001-8662(2023)04-0048-09
作者:
毛巍颖
云南省地震局,昆明 650224
Author(s):
MAO Weiying
Yunnan Earthquake Agency , Kunming 650224, China
关键词:
开远井和思茅大寨井同震响应动态应力应变环境
Keywords:
Kaiyuan well and Simao Dazhai wellCoseismic response dynamicStress-strain field.
分类号:
P315.7
DOI:
10.13512/j.hndz.2023.04.07
文献标志码:
A
摘要:
云南开远井和思茅大寨井分别位于滇东南褶皱带、滇西南的兰坪—思茅褶皱带,其中滇东南褶皱带地壳基底稳定、地震活动性较弱、区域构造应力场方向为南东东。兰坪—思茅褶皱带在地质时期构造活动一直十分强烈、历史上6级多地震频繁发生、区域构造应力场方向为南东。通过水位观测数据分析,开远井和思茅大寨井均有明显的同震响应现象,同震响应均表现为阶变,但他们的同震响应动态差异明显,其中开远井同震阶变次数和阶变幅度明显低于思茅大寨井,主要为阶变下降。而思茅大寨井均为阶变上升。井孔所在地区应力应变环境差异是导致井水位同震响应动态差异的原因,震源机制和GPS观测结果显示,思茅大寨井所在地区构造应力为挤压,开远井地区则处于拉张。地震时地震波使一直处于挤压状态下的思茅大寨井含水层发生孔隙挤压,含水层发生同震收缩,导致井水位发生一致的阶变上升。地震使一直处于张应力环境的开远井含水层发生同震膨胀,导致井水位主要表现为阶变下降。由构造活动和地震活动水平反映出的构造应力强度差异可能是开远井和思茅大寨井同震阶变次数和幅度差异的原因之一。
Abstract:
The Kaiyuan well and Simao Dazhai well are located in the Southeastern Yunnan folded belt and Lanping-Simao folded belt in Southwestern Yunnan. In the Southeastern Yunnan folded belt,the crust basement is stable, the seismicity is weak, and the direction of regional tectonic stress field is SEE. The tectonic activity of Lanping-Simao folded belt has been very strong in geological era, with multiple earthquakes of magnitude 6 occurring frequently in history and the direction of regional tectonic stress field is southeast. Through the analysis of water level observation data, it is found that both Kaiyuan well and Simao Dazhai well have obvious coseismic response phenomenon, and both coseismic responses show step changes with obvious dynamic differences. The frequency and amplitude of coseismic step changes of Kaiyuan well is obviously lower than that of Simao Dazhai well. Most of the coseismic response of Kaiyuan well are step drop, and all of the coseismic response of Simao Dazhai Well are step rise. The difference of stress-strain environment in the area where the wells are located is the reason for the dynamic difference of coseismic response of well water level. Focal mechanism and GPS observation results show that the tectonic stresses in the areas where Simao Dazhai well and Kaiyuan well are located are compression and tension respectively. During the earthquake, the seismic wave caused the pore squeezing of the aquifer in the Simao Dazhai well, which has been in the squeezing state, and the aquifer was coseismic contracted, resulting in a consistent step rise of the well water level. The earthquake caused the coseismic expansion of the aquifer in the Kaiyuan well, which has been in a tensile stress environment, resulting in a step drop of the well water level. The intensity difference of tectonic stress reflected by the level of tectonic activity and seismic activity may be one of the reasons for the difference in the frequency and amplitude of coseismic step changes between Kaiyuan well and Simao Dazhai well.

参考文献/References:

[1]陶志刚,王晓,祝杰,等.青海门源MS6.9地震井水位与水温同震响应特征分析[J].中国地震,2022,38(3):399-411.
[2]姜佳佳,冯建刚,张昱.玛多MS7.4级地震引起的甘肃地区水位、水温同震响应特征分析[J].高原地震,2022,34(1):1-7.
[3]王秋宁,李媛媛.陕西区域流体台网记录玛多7.4级、门源6.9级地震远场同震响应特征对比[J].高原地震,2022,34 (2):10-15.
[4]郑江蓉,杨从杰,江昊琳.江苏流体井网对汶川和日本地震的同震响应特征研究[J].地震研究,2013,36(1):34-41.
[5]尹宏伟,梁丽环,韩文英,等.河北省地下流体水位对远场大地震的响应特征研究[J].防灾科技学院学报,2015,17 (3):37-45.
[6]缪阿丽,张艺,叶碧文,等.江苏井网水温水位对几次大地震的同震响应特征及机理分析[J].地震,2014,34(4):78-87.
[7]向阳,孙小龙,高小其,等.新10井水位对九寨沟MS7.0、精河MS6.6地震同震响应[J].中国地震,2017,33(4):563-574﹒
[8]颜龙,梁卉,向阳,等.新疆北天山地区井水位同震响应特征分析研究[J].内陆地震,2019,33(1):59-67﹒
[9]杨竹转,邓志辉,赵云旭,等.云南思茅大寨井水位同震阶变的初步研究[J].地震学报,2005,27(5):569-574﹒
[10]段胜朝,张山元,番绍辉,等. 2021年漾濞MS地震云南数字化井水位同震响应特征分析[J].地震地磁观测与研究, 2022,43(4):131-138
[11] 陶志刚,刘春国,赵德扬. 2022年芦山MS6.1、马尔康MS6.0地震井水位、水温同震响应特征[J].地震地磁观测与研究,2022,43(4):121-130
[12]魏海滨,谷洪彪,孔慧敏,等.云南会泽井水位对2014年鲁甸MS6.5地震同震响应过程模拟[J].地震研究,2022, 45(2):329-339.
[13]胡小静,付虹,卞跃跃,等.云南红河地区地下流体井-含水层系统特征研究[J].地震研究,2022,45(2):300-309.
[14]毛玉平.云南地区强震(M≥6)研究[M].昆明:云南科技出版社,2003:15-18.
[15]李颖,殷伟伟,胡玉良,等.山西洪洞井水位对远场大地震的响应特征分析[J].中国地震,2018,34(1):93-103﹒
[16]周志华,黎明晓,马玉川.芦山Ms7.0地震引起的水位同震响应特征分析[J].四川地震,2014(2):20-25﹒
[17]莫佩婵,阎春恒,李蕾,等.广西桂平西山井水位同震特征和机理初探[J].中国地震,2018,34(3):525-533﹒
[18]崔瑾,司学芸,孙小龙,等.宁夏井水位记震能力变化与周边地震关系研究[J].地震,2021,41(3);131-143﹒
[19]毛魏颖.云南思茅大寨井水位地震同震响应特征分析[J],地震研究,2018,41(4):577-582.
[20] Brodsky E E,Roeloffs E,Woodcock D,et al. A mechanism for sustained groundwater pressurs changes induced by distant earthquakes[J/OL].Journal of Geophysical Researhc, 2003,108(B8)[2023-3-10]. https://doi. org / 10.1029 /2002JB002321..
[21] Elkhoury J E,Brodsky E E,Agnew D C. Seismic wave increase permeability[J]. Nature,2006,441(29):1135-1138
[22] Quilty E G. Water lever changes in response to the December 20,1994 M4.7earthquake near Parkfield, California[J]. Bulletin of the Seismological of Amerrica, 1997,87(2):310-317.
[23] Zhang Y,Wang C Y,Fu L Y,et al. Mechanism of the coseismic change of volumetric strain in the far field of earthquakes[J]. Bulletin of the Seismological Society of America.,2017,107(1):475-481.
[24]廖丽霞,秦双龙,莫佩婵.华南流体预测指标提取及应用实例[J].华南地震,2022,(04):67-77.
[25]莫佩婵,袁媛,文翔,等.广西九塘井水位突变异常映震效能分析[J].华南地震,2022,(04):94-101.
[26]毛巍颖.云南思茅大寨井与大理月溪井水位同震响应对比分析[J].华南地震,2022,(01):31-37.
[27]付虹,邬成栋,赵小艳,等.云南开远井水位异常分析[J].地震学报,2014,36(2):292-298
[28]仵彦卿.岩石孔隙率随地层深度变化规律研究[J].西安理工大学学报,2000,16(1):6-8﹒

备注/Memo

备注/Memo:
收稿日期:2023-03-11
基金项目:中国地震局星火计划:滇南—滇西南地区地下流体异常深浅耦合关系研究(XH21030Y)
作者简介:毛巍颖(1985-),女,工程师,主要从事地震监测预报研究。
E-mail:897162514@qq.com
更新日期/Last Update: 2023-12-30