[1]费圣翔,陈子龙,王 冲,等.基于图神经网络的异构网络信息安全漏洞深度检测方法[J].华南地震,2024,(03):180-186.[doi:10.13512/j.hndz.2024.03.20]
 FEI Shengxiang,CHEN Zilong,WANG Chong,et al.Depth Detection Method for Information Security Vulnerabilities in Heterogeneous Networks Based on Graph Neural Network[J].,2024,(03):180-186.[doi:10.13512/j.hndz.2024.03.20]
点击复制

基于图神经网络的异构网络信息安全漏洞深度检测方法()
分享到:

华南地震[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年03期
页码:
180-186
栏目:
信息技术与网络安全
出版日期:
2024-09-30

文章信息/Info

Title:
Depth Detection Method for Information Security Vulnerabilities in Heterogeneous Networks Based on Graph Neural Network
文章编号:
1001-8662(2024)03-0180-07
作者:
费圣翔1陈子龙2王 冲2王 睿3刘新鹏4
1.山东九州信泰信息科技股份有限公司,济南 250101;2.山东慢雾信息技术有限公司,济南 250102;3.国网山东省电力公司电力科学研究院,济南 250003;4.恒安嘉新(北京)科技股份公司,北京 100080
Author(s):
FEI Shengxiang1CHEN Zilong2WANG Chong2WANG Rui3LIU Xinpeng4
1.Shandong Jiuzhou Xintai Information Technology Co.,Ltd.,Jinan 250101,China;2.Shandong Slow Mist Information Technology Co.,Ltd.,Jinan 250102,China;3.Electric Power Research Institute of State Grid Shandong Electric Power Company , Jinan 250003, China;4.Hengan Jiaxin(Beijing)Technology Co., Ltd., Beijing 100080, China
关键词:
图神经网络异构网络安全漏洞检测方法检测精度
Keywords:
Graph neural network Heterogeneous network Security vulnerabilities Detection methodDetection accuracy
分类号:
TP393
DOI:
10.13512/j.hndz.2024.03.20
文献标志码:
A
摘要:
受到连接设备多样性以及互操作性特点的影响,异构网络节点之间的关联关系较为复杂,因此在进行安全漏洞检测时,通常会引起缺乏对节点关联关系的有效捕捉而导致检测精度不佳。对此,提出基于图神经网络的异构网络信息安全漏洞深度检测方法。以异构网络实体作为图节点,并以不同实体之间的关联关系作为边,将异构网络转换为图表示,并分别采用邻接矩阵以及权重矩阵对节点以及边信息进行提取。采用图神经网络领域中的GraphSAGE网络模型对异构网络的节点和边进行处理,并引入注意力机制以学习节点特征表示。将异构网络中节点和边的特征向量作为数据输入,结合随机森林算法构建一个分类器,并通过对其进行训练,使其能够根据边和节点的属性信息对是否存在安全漏洞进行判断,最后结合投票法对输入样本的所属类别进行确定。在实验中,对提出的方法进行了检测精度的检验。最终的测试结果表明,采用提出的方法对异构网络安全漏洞进行检测时,漏洞风险等级的匹配度较高,具备较为理想的检测精度。
Abstract:
Influenced by the diversity and interoperability of connected devices,the relationship between hetero?geneous network nodes is complex. Therefore,it usually leads to the lack of effective capture of the relationship be?tween nodes when detecting security vulnerabilities, resulting in poor detection accuracy. To solve this problem,this paper proposed a depth detection method for information security vulnerabilities in heterogeneous networks based on a graph neural network. Heterogeneous network entities were regarded as graph nodes,and the relation?ship between different entities was regarded as edges. The heterogeneous network was transformed into a graph repre?sentation,and the node and edge information were extracted by adjacency matrix and weight matrix,respectively. GraphSAGE network model in the field of graph neural network was used to deal with the nodes and edges in the het?erogeneous network,and an attention mechanism was introduced to learn the feature representation of nodes. The feature vectors of nodes and edges in the heterogeneous network were used as data inputs,and a classifier was con?structed by using the random forest algorithm and trained to make it determine whether there are security vulnerabili?ties based on the attribute information of edges and nodes. Finally,the input samples were classified by voting meth?od. In the experiment, the detection accuracy of the proposed method was tested. The final test results show that when the proposed method is used to detect security vulnerabilities in the heterogeneous network,the matching de?gree of vulnerability risk levels is high,and the detection accuracy is ideal.

参考文献/References:

[1] Chen J,Lin W,Cai S,et al. BiTCN_DRSN:An effective software vulnerability detection model based on an improved temporal convolutional network[J]. Journal of Systems and Software,2023(204):111772-111776.
[2]潘超,吕翘楚,肖巍.基于启发式遗传算法的即时通信网络漏洞检测[J].计算机仿真,2023,40(08):191-195.
[3]肖鹏,张旭升,杨丰玉,等.基于深层图卷积网络与注意力的漏洞检测方法[J].计算机工程与应用,2024,60(03):292-298.
[4]刘悦.基于孤立森林算法的计算机网络信息安全漏洞检测方法[J].信息与电脑(理论版),2024,36(04):68-70.
[5]陈锦富,王震鑫,蔡赛华,等.基于蜕变测试的区块链智能合约漏洞检测方法[J].通信学报,2023,44(10):164-176.
[6]马莺姿,陈哲,殷家乐,等.结合模糊测试和动态分析的内存安全漏洞检测[J].计算机科学,2024,51(02):352-358.
[7]吕连,谢东刚.基于权重k邻近的通信网络安全漏洞自动化检测[J].自动化与仪器仪表,2024,(04):21-24+31.
[8]董继平,郭启全,高春东,等.基于图深度学习的漏洞检测[J].科技导报,2023,41(13):41-59.
[9]张和伟,王奉章.基于被动分簇算法的即时通信网络安全漏洞检测方法 [J]. 智能计算机与应用,2023,13(07):119-122.
[10]王璇,王馨彤,陈燕俐,等.基于DistilBert-LSTM与多项朴素贝叶斯的漏洞检测方法[J].南京邮电大学学报(自然科学版),2023,43(02):102-110.
[11]王泽旭,文斌.关键路径预搜索的符号执行智能合约漏洞检测[J].应用科学学报,2024,42(02):364-374.
[12]何杰,蔡瑞杰,尹小康,等.面向Cisco IOS-XE的Web命令注入漏洞检测 [J].计算机科学,2023,50(04):343-350.
[13]朱丽娜,马铭芮,朱东昭.基于图神经网络和通用漏洞分析框架的C类语言漏洞检测方法 [J]. 信息网络安全, 2022,22(10):59-68.
[14]徐晓君,常会丽.多线程交互学习软件系统安全漏洞自动化检测[J].计算机仿真,2022,39(04):335-340.
[15]马艺新,唐时博,谭静,等.基于信息流分析的密码核设计安全验证与漏洞检测[J].西北工业大学学报,2022,40 (01):76-83.

备注/Memo

备注/Memo:
收稿日期:2024-06-05
作者简介:费圣翔(1987-),男,工程师,主要研究方向为网络安全运营、信息安全风险评估。E-mail:nformati@163.com
更新日期/Last Update: 2024-09-30